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Abstract

Inductive conformal predictors have been designed to overcome the computa-
tional inefficiency exhibited by conformal predictors for many underlying predic-
tion algorithms. Whereas computationally efficient, inductive conformal predic-
tors sacrifice different parts of the training set at different stages of prediction,
which affects their informational efficiency. This paper introduces the method
of cross-conformal prediction, which is a hybrid of the methods of inductive
conformal prediction and cross-validation, and studies its validity and informa-
tional efficiency empirically. The computational efficiency of cross-conformal
predictors is comparable to that of inductive conformal predictors, and they
produce valid predictions in our empirical studies.

The journal version of this paper was published in 2015 as [21].
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1 Introduction

The method of conformal prediction produces set predictions that are automat-
ically valid in the sense of their unconditional coverage probability being equal
to or exceeding a preset confidence level ([22], Chapter 2). A more computation-
ally efficient method of this kind is that of inductive conformal prediction ([16];
[22], Section 4.1; [13]). However, inductive conformal predictors are typically less
informationally efficient, in the sense of producing larger prediction sets as com-
pared with conformal predictors. Motivated by the method of cross-validation
[15, 18], this paper explores a hybrid method, which we call cross-conformal
prediction.

We are mainly interested in the problems of classification and regression, in
which we are given a training set consisting of examples, each example consist-
ing of an object and a label, and asked to predict the label of a new test object;
in the problem of classification labels are elements of a given finite set, and in
the problem of regression labels are real numbers. (Our experimental results
will involve only classification problems.) If we are asked to predict labels for
more than one test object, the same prediction procedure can be applied to each
test object separately. In this introductory section and in most of our empiri-
cal studies we consider the problem of binary classification, in which labels can
take only two values, which we will encode as 0 and 1. We always assume that
the examples (both the training examples and the test examples, consisting of
given objects and unknown labels) are generated from an exchangeable prob-
ability measure (i.e., a probability measure that is invariant under permuting
the examples). This exchangeability assumption is slightly weaker than the as-
sumption of randomness that the examples are generated independently from
the same probability measure.

The idea of conformal prediction is to try the two different labels, 0 and
1, for the test object, and for either postulated label to test the assumption of
exchangeability by checking how well the test example conforms to the training
set; the output of the procedure is the corresponding p-values p0 and p1. Two
standard ways to package the pair (p0, p1) are:

� Report the predicted label argmaxy∈{0,1} p
y, confidence 1 − min(p0, p1),

and credibility max(p0, p1).

� For a given significance level ϵ ∈ (0, 1) output the corresponding prediction
set {y | py > ϵ}.

The prediction sets output by conformal predictors make an error, i.e., fail to
cover the true label, with probability at most ϵ. In empirical studies this shows as
the calibration plot (the plot of the percentage of errors against ϵ ∈ (0, 1)) being
at or below the bisector of the first quadrant, to within statistical fluctuations;
in practice, calibration plots are usually very close to the bisector of the first
quadrant.

In inductive conformal prediction, discussed in Section 2 of this paper, the
training set is split into two parts, the proper training set and the calibration
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set. The two p-values p0 and p1 are computed by checking how well the test
example conforms to the calibration set. The way of checking conformity is
based on a prediction rule found from the proper training set and produces, for
each example in the calibration set and for the test example, the corresponding
“conformity score”. The conformity score of the test example is then calibrated
to the conformity scores of the calibration set to obtain the p-value. For details,
see Section 2.

Inductive conformal predictors are usually much more computationally effi-
cient than the corresponding conformal predictors (also discussed in Section 2).
However, they are less informationally efficient: they use only the proper train-
ing set when developing the prediction rule and only the calibration set when
calibrating the conformity score of the test example, whereas conformal predic-
tors use the full training set for both purposes.

Cross-conformal prediction (Section 3) modifies inductive conformal predic-
tion in order to use the full training set for calibration and significant parts of
the training set (such as 80% or 90%) for developing prediction rules. The train-
ing set is split into K folds of equal (or almost equal) size; in our experiments
we use K = 5 or K = 10. For each k = 1, . . . ,K we construct a separate induc-
tive conformal predictor using the kth fold as the calibration set and the rest
of the training set as the proper training set. Let (p0k, p

1
k) be the corresponding

p-values. Next the two sets of p-values, p0k and p1k, are merged into combined
p-values p0 and p1, which are the result of the procedure. In the method of
cross-conformal prediction we, essentially, combine p-values by averaging them.

Empirical studies reported in Section 3 show that cross-conformal predictors
are valid in the sense of their calibration plots being close to the bisector of the
first quadrant (in this case we also say that their predictions are well calibrated).
In our empirical studies in this paper we mainly use the well-known Spambase
data set. The underlying algorithm that we use is Freedman’s gradient boosting
(also known as MART), which performs particularly well on the Spambase data
set [11]; however, because of its computational inefficiency, it is utterly infeasible
to use it in combination with conformal prediction. We use the same data
set to demonstrate the informational efficiency of cross-conformal predictors
as compared with inductive conformal predictors. (It is customary to omit
“informational” in “informational efficiency”: see, e.g., [22]; however, we will
rarely do so in this paper to avoid confusion with computational efficiency.)

Besides the Spambase data set we use another well-known dataset, the USPS
data set of hand-written digits, in combination with the 1-Nearest Neighbour
algorithm for tangent distance, which is one of the best performing algorithms
on this data set. Now it becomes computationally feasible to use conformal
prediction, and we show that cross-conformal prediction works almost as well
as conformal prediction. Our experiments on the USPS data set also confirm the
empirical validity of cross-conformal predictors and their greater informational
efficiency as compared with inductive conformal predictors.

Inductive conformal predictors guarantee, and Section 3 studies empirically,
the notion of validity that we call unconditional validity since it is a guarantee on
unconditional coverage probability. Section 4 introduces a conditional version
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of cross-conformal predictors and studies empirically its conditional validity.
Section 5 concludes.

Appendix A discusses the intuition behind an extreme case of cross-
conformal prediction that we call leave-one-out conformal prediction. It
explains why cross-conformal predictors do not enjoy the same theoretical
guarantee of unconditional validity as inductive conformal predictors.

Appendix B reports results of empirical studies on the Spambase data set
of two bootstrap versions of conformal prediction. The basic version is em-
pirically valid but somewhat less informationally efficient than cross-conformal
predictors. The randomized version is not empirically valid.

In Appendix C we consider the method of cross-conformal prediction in
which averaging p-values is replaced by the most standard way of combining
p-values, Fisher’s method [6]. However, this method produces badly miscali-
brated results. Fisher’s method assumes the independence of the p-values being
combined, and the poor calibration suggests that in this case they are heavily
dependent.

2 Conformal predictors and inductive conformal
predictors

We fix two measurable spaces: X, called the object space, and Y, called the label
space. The Cartesian product Z := X×Y is the example space. A training set
is a sequence (z1, . . . , zl) ∈ Zl of examples zi = (xi, yi), where xi ∈ X are the
objects and yi ∈ Y are the labels.

A conformity measure is a measurable function A : Z∗ × Z → R such that
A(ζ, z) does not depend on the order of the elements of ζ ∈ Z∗. The idea behind
the conformity score A(ζ, z) is that it should measure how well the example z
conforms to the examples in the sequence ζ. The conformal predictor (CP)
corresponding to A is defined as the set predictor

Γϵ(z1, . . . , zl, x) := {y | py > ϵ}, (1)

where ϵ ∈ (0, 1) is the chosen significance level (1− ϵ is known as the confidence
level), the p-values py, y ∈ Y, are defined by

py :=
|{i ∈ {1, . . . , l} | αi ≤ αy}|+ 1

l + 1
, (2)

and

αi := A((z1, . . . , zi−1, zi+1, . . . , zl, z), zi), i ∈ {1, . . . , l},
αy := A((z1, . . . , zl), (x, y)) (3)

are the conformity scores of the training and test examples. Given the train-
ing set and a test object x the CP predicts its label y; it makes an error (at
significance level ϵ) if y /∈ Γϵ(z1, . . . , zl, x).
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In this paper we will use the 1-Nearest Neighbour conformity measure

A(((x1, y1), . . . , (xn, yn)), (x, y)) :=
mini=1,...,n:yi ̸=y d(x, xi)

mini=1,...,n:yi=y d(x, xi)
, (4)

where d : X2 → [0,∞) is a measure of distance between two points (often, but
not necessarily, a metric). The intuition behind (4) is that an example conforms
to a set of examples if it is much closer to an example in the set with the same
label than to any example with a different label.

For S ⊆ {1, . . . , l}, we let zS stand for the sequence (zs1 , . . . , zsn), where
s1, . . . , sn is the sequence of all elements of S listed in the increasing order (so
that n := |S|).

In the method of inductive conformal prediction, we split the training set
into two non-empty parts, the proper training set zT and the calibration set zC ,
where (T,C) is a partition of {1, . . . , l}. Let A be a conformity measure (it
would be possible to drop the requirement that A(ζ, z) do not depend on the
order of the elements of ζ in the case of inductive conformal predictors and cross-
conformal predictors, but we will not pursue this possibility). The conformity
score A(zT , z) will be used to measure how well the example z conforms to the
proper training set zT . A standard choice is

A(zT , (x, y)) := ∆(y, f(x)), (5)

where f : X → Y′ is a prediction rule found from zT as the training set and
∆ : Y × Y′ → R is a measure of similarity between a label and a prediction.
Allowing Y′ to be different from Y (usually Y′ ⊃ Y) may be useful when
the underlying prediction method gives additional information to the predicted
label; e.g., the MART procedure used later in the paper gives the logit of the
predicted probability that the label is 1.

The inductive conformal predictor (ICP) corresponding to a conformity mea-
sure A is defined as the set predictor (1), where the p-values py, y ∈ Y, are now
defined by

py :=
|{i ∈ C | αi ≤ αy}|+ 1

|C|+ 1
, (6)

and the conformity scores are

αi := A(zT , zi), i ∈ C, αy := A(zT , (x, y)). (7)

The random variables whose realizations are xi, yi, zi, x, y, z will be denoted
by the corresponding upper case letters (Xi, Yi, Zi, X, Y , Z, respectively). The
following proposition of unconditional validity is almost obvious.

Proposition 1 ([22], Propositions 2.3 and 4.1). Let Γ be a conformal predictor
or an inductive conformal predictor. If random examples Z1, . . . , Zl, Z = (X,Y )
are exchangeable (i.e., their distribution is invariant under their permutations),
the probability of error Y /∈ Γϵ(Z1, . . . , Zl, X) does not exceed ϵ for any ϵ.
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We call the property of conformal predictors and inductive conformal pre-
dictors asserted in Proposition 1 unconditional validity since it is about the
unconditional probability of error; we often abbreviate it to “validity” omitting
“unconditional”. Various conditional properties of validity are discussed in [14]
and, in more detail, [20].

To check the validity of a family (Γϵ) of set predictors, such as a conformal
predictor or an inductive conformal predictor, empirically on given training and
test sets one can use the calibration plot : the function mapping each significance
level ϵ to the percentage of erroneous predictions made by the set predictor Γϵ on
the test set. However, Proposition 1 does not guarantee that at each significance
level ϵ with high probability the calibration plot of a conformal predictor or an
inductive conformal predictor will be close to or below the bisector of the first
quadrant, even when the test set is large: errors on different test examples are
not independent, since predictions are computed from the same training set.

Figure 1 shows the calibration plots for a conformal predictor and an induc-
tive conformal predictor on the USPS data set. The data set, which consists of
9298 labelled hand-written images of the digits 0–9, has been divided randomly
into a training set of size 7200 and a test set of size 2098 (we cannot use the
original split into the training and test sets as it violates the exchangeability
assumption: see, e.g., [22], Section 7.1). The conformity measure used for both
the CP and the ICP is (4) with d tangent distance [17]. In the case of the ICP,
the training set is randomly divided into a proper training set and a calibration
set in proportion 2:1, as discussed below. The experiments are repeated 8 times
to get an idea of how much their results are affected by the random splits.

The plots in Figure 1 indicate that both kinds of predictors are empirically
well calibrated (this phenomenon was first observed in [19]). In the case of
inductive conformal predictors a theoretical explanation can be found in [20]
(Proposition 2a): with a high probability, the conditional probability of error
given the training set will be close to ϵ. Since errors on different test examples
are conditionally independent given the training set, this implies good calibra-
tion: at each significance level ϵ with high probability the calibration plot of an
inductive conformal predictor will be close to or below the bisector of the first
quadrant (assuming the test set is large enough).

The family of prediction sets Γϵ(z1, . . . , zl, x), ϵ ∈ (0, 1), is just one possi-
ble way of packaging the p-values py. Another way, already discussed in Sec-
tion 1 in the context of binary classification, is to report the predicted label
argmaxy∈Y py, confidence 1 − p, where p is the second largest p-value among
py, and the credibility maxy p

y. In the case of binary classification the pre-
dicted label, confidence, and credibility carry the same information as the full
set {py | y ∈ Y} of p-values, but this is not true in general. It is clear that the
notion of confidence is likely to be useful only in classification problems.

Confidence and credibility can be used for assessing the informational effi-
ciency and validity of predictors: high confidence values are a sign of informa-
tional efficiency, and a mean credibility slightly above 0.5 over a large test set
is a sign of validity.

In our experiments reported in this and the following sections we split the
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Figure 1: Left panel: the calibration plots on the USPS data set for the confor-
mal predictor and the first 8 seeds, 0–7, for the pseudorandom number generator.
Right panel: the analogous plots for the inductive conformal predictor.

training set into the proper training set and the calibration set in proportion 2 :
1. This is the most standard proportion (cf. [11], p. 222, where the validation set
plays a similar role to our calibration set), but the ideal proportion depends on
the learning curve for the given problem of prediction (cf. [11], Figure 7.8). Too
small a calibration set leads to a high variance of confidence (since calibrating
conformity scores becomes unreliable) and too small a proper training set leads
to a downward bias in confidence (conformity scores based on a small proper
training set cannot produce confident predictions). In the next section we will
see that using cross-conformal predictors improves both bias and variance (cf.
Table 1).

3 Cross-conformal predictors

Cross-conformal predictors (CCPs) are defined as follows. The training set is
split into K non-empty subsets (folds) zSk

, k = 1, . . . ,K, where K ∈ {2, 3, . . .}
is a parameter of the algorithm and (S1, . . . , SK) is a partition of {1, . . . , l}. For
each k ∈ {1, . . . ,K} and each potential label y ∈ Y of the test object x find the
conformity scores of the examples in zSk

and of (x, y) by

αi,k := A(zS−k
, zi), i ∈ Sk, αy

k := A(zS−k
, (x, y)), (8)

where S−k := ∪j ̸=kSj = {1, . . . , l} \ Sk and A is a given conformity measure.
The corresponding p-values are defined by

py :=

∑K
k=1 |{i ∈ Sk | αi,k ≤ αy

k}|+ 1

l + 1
. (9)

6



Confidence and credibility are now defined as before; the set predictor Γϵ is also
defined as before, by (1), where the significance level ϵ > 0 is another parameter.

The definition of CCPs parallels that of ICPs, except that we now use the
whole training set for calibration. The conformity scores (8) are computed as
in (7) but using the current fold as the calibration set and the union of all the
folds except for the current one as the proper training set. Calibration (9) is
done by combining the ranks of the test example (x, y) with a postulated label
in all the folds.

If we define the separate p-value

pyk :=
|{i ∈ Sk | αi,k ≤ αy

k}|+ 1

|Sk|+ 1
(10)

for each fold, we can see that py is essentially an average of pyk. In particular, if
each fold has the same size, |S1| = · · · = |SK |, a simple calculation gives

py = p̄y +
K − 1

l + 1
(p̄y − 1) ≈ p̄y, (11)

where p̄y := 1
K

∑K
k=1 p

y
k is the arithmetic mean of pyk and the ≈ assumes K ≪ l.

Remark 2. As Charalambos Eliades noticed in September 2024, the equality
“=” in (11) appears paradoxical in that py becomes negative when p̄y = 0.
However, the paradox disappears when we remember that the smallest possible
value for p̄y is

p̄y =
1

|Sk|+ 1
=

K

l +K

((11) presupposes that |Sk| = l/K does not depend on k), in which case (11)
gives

py =
1

l + 1
,

i.e., the usual lower bound for the p-values produces by a full conformal predictor
for a training set of size l.

In this paper we give calibration plots for 10-fold cross-conformal predic-
tion; calibration plots for 5-fold cross-conformal prediction are part of Online
Resource 1 of the journal version [21]. We take K ∈ {5, 10} following the advice
for cross-validation in [11], who refer to Breiman and Spector [3] and Kohavi
[12]. (Our setting, however, is somewhat different from cross-validation, and
it is not obvious whether K ∈ {5, 10} remains a good choice.) In the experi-
ments of this section we use the Spambase and USPS data sets. The size of the
Spambase data set is 4601, and there are two labels: email, encoded as 0, and
spam, encoded as 1. As already mentioned, the USPS data set is bigger, 9298
examples, and multilabel (0–9).

The conformity measure used in the case of the Spambase data set is (5),
where f is output by MART ([11], Chapter 10) and

∆(y, f(x)) :=

{
f(x) if y = 1

−f(x) if y = 0.
(12)

7



MART’s output f(x) models the log-odds of spam vs email,

f(x) = log
P (1 | x)
P (0 | x)

,

which makes the interpretation of (12) as conformity score very natural. In the
case of the USPS data set, we always use the conformity measure (4) with d
tangent distance (with the exception of Table 3).

The R and MATLAB programs used in the experiments described in this
paper are available as Online Resource 2 of the journal version [21] (and also
were uploaded to arXiv). The R programs, used for processing the Spambase
data set, rely on the gbm package with virtually all parameters set to the default
values (given in the description provided in response to help("gbm")). The
only parameter that has been modified is n.trees, the number of trees, which
should be as large as possible and whose default value was clearly insufficient.
The MATLAB programs, used for processing the USPS data set, rely on the
C program for computing tangent distance (with one-sided distance and all
tangents) written by Daniel Keysers.

Figure 2 (the two top panels) gives the calibration plots for the CCP and for
8 random splits of the data sets into a training set (of size 3600 for Spambase and
7200 for USPS) and a test set (of size 1001 for Spambase and 2098 for USPS) and
of the training set into 10 folds of equal size. In the case of Spambase, there is a
further source of randomness as the MART procedure is itself randomized. The
two bottom panels of Figure 2 give the lower left corners of the plots in the top
panels: these are the most important parts of calibration plots in applications.
The analogous plots for 5 folds are given in Online Resource 1 of the journal
version [21]. Visually, all plots are well calibrated (close to the bisector of the
first quadrant). Since the USPS data set is bigger, the corresponding plots are
closer to the bisector of the first quadrant.

As for the informational efficiency of the CCP on the Spambase data set, see
Table 1, which gives some statistics for the confidence and credibility output by
the ICP (with the 2 : 1 split into the proper training and calibration sets, as
already mentioned) and the 5-fold and 10-fold CCP. The columns labelled “0”
to “99” give the mean values of confidence and credibility over the test set for
various values of the seed for the pseudorandom number generator. The column
labelled “Average” gives the average v̄ := 1

100

∑99
i=0 vi of all the 100 values

(which we denote v0, . . . , v99) for the seeds 0 to 99, and the column labelled

“St. dev.” gives the estimate ( 1
99

∑99
i=0(vi − v̄)2)1/2 of the standard deviation

of the mean values computed from v0, . . . , v99 (the square root of the standard
unbiased estimate of the variance of the mean values). The advantage of the
CCP over the ICP that can be seen from the table is that it gives higher and
more stable mean confidence values: see the last two columns.

Similar results for the USPS data set are given in Table 2. This table,
however, also contains information about the CP, which becomes feasible in the
case of the 1-Nearest Neighbour underlying algorithm that we use for the USPS
data set. The CCP is almost as informationally efficient as the CP (especially
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Figure 2: Top panels: the calibration plots on the Spambase (left panel) and
USPS (right panel) data sets for the cross-conformal predictor withK = 10 folds
and the first 8 seeds, 0–7, for the pseudorandom number generators. Bottom
panels: the lower left corner of the corresponding top panel.

in the case of 10 folds) and significantly more informationally efficient than the
ICP.

Tables 1 and 2 are based on underlying algorithms that are among the best
for their respective data sets (MART for Spambase and 1-Nearest Neighbour
with tangent distance for USPS). Table 3 is the analogue of Table 2 for Euclidean
distance and so is based on a clearly suboptimal underlying algorithm: it is well
known that the performance of the 1-Nearest Neighbour algorithm improves
greatly when Euclidean distance is replaced by tangent distance. We can see
that the 10-fold CCP is still almost as informationally efficient as the CP, even
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Table 1: Mean (over the test set) confidence and credibility for the ICP and
the 5-fold and 10-fold CCP on the Spambase data set. The results are given
for various values of the seed for the pseudorandom number generator; column
“Average” gives the average of all the 100 values for the seeds 0–99, and column
“St. dev.” gives the estimate of the standard deviation computed from those
100 values.

Seed 0 1 . . . 99 Average St. dev.

mean confidence, ICP 99.25% 99.23% . . . 99.14% 99.158% 0.149%
mean credibility, ICP 51.31% 50.38% . . . 51.44% 50.922% 1.144%

mean confidence, K = 5 99.22% 99.17% . . . 99.28% 99.232% 0.061%
mean credibility, K = 5 51.11% 49.75% . . . 50.78% 50.745% 0.910%

mean confidence, K = 10 99.24% 99.20% . . . 99.31% 99.253% 0.055%
mean credibility, K = 10 51.08% 49.74% . . . 50.70% 50.735% 0.928%

Table 2: Mean confidence and credibility for the ICP, 5- and 10-fold CCP, and
CP based on tangent distance on the USPS data set. The results are given
for various values of the seed for the pseudorandom number generator; columns
“Average” and “St. dev.” give the averages and estimates of standard deviations
as in Table 1.

Seed 0 1 . . . 99 Average St. dev.

mean confidence, ICP 99.85% 99.79% . . . 99.79% 99.823% 0.044%
mean credibility, ICP 50.31% 49.72% . . . 51.15% 50.135% 0.932%

mean confidence, K = 5 99.88% 99.85% . . . 99.85% 99.846% 0.018%
mean credibility, K = 5 50.39% 50.40% . . . 50.79% 50.059% 0.748%

mean confidence, K = 10 99.90% 99.87% . . . 99.86% 99.855% 0.017%
mean credibility, K = 10 50.39% 50.30% . . . 50.82% 50.045% 0.757%

mean confidence, CP 99.91% 99.87% . . . 99.87% 99.860% 0.017%
mean credibility, CP 50.92% 51.46% . . . 51.44% 50.893% 0.755%

though it is significantly less informationally efficient than the predictors based
on tangent distance.
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Table 3: The analogue of Table 2 for Euclidean distance.

Seed 0 1 . . . 99 Average St. dev.

mean confidence, ICP 99.76% 99.65% . . . 99.65% 99.716% 0.052%
mean credibility, ICP 50.58% 50.16% . . . 50.75% 50.208% 0.855%

mean confidence, K = 5 99.78% 99.72% . . . 99.75% 99.740% 0.023%
mean credibility, K = 5 50.29% 50.91% . . . 50.69% 50.132% 0.749%

mean confidence, K = 10 99.81% 99.75% . . . 99.77% 99.760% 0.020%
mean credibility, K = 10 50.24% 50.80% . . . 50.68% 50.121% 0.757%

mean confidence, CP 99.82% 99.78% . . . 99.79% 99.779% 0.019%
mean credibility, CP 50.25% 50.81% . . . 50.63% 50.124% 0.756%

4 Conditional cross-conformal predictors

There are several natural kinds of conditional validity for set predictors: see,
e.g., [20], Figure 1. Achieving some of these kinds (such as label and object con-
ditional validity, in the terminology of [20]) requires modifying the definition of
conformal predictors. Another kind (training conditional validity) is achieved
automatically, at least in some cases: see [20], Section 3. In this paper we only
discuss the label conditional version of conformal predictors and their variants,
which ensures the validity conditional on the label of the test example. As will
be discussed later, the property of label conditional validity is particularly im-
portant in applications where different kinds of errors have different significance,
such as automatic spam filtering.

The only difference of label conditional conformal predictors from CPs is that
(2) is replaced by

py :=
|{i ∈ {1, . . . , l} | yi = y & αi ≤ αy}|+ 1

|{i ∈ {1, . . . , l} | yi = y}|+ 1
.

And the only difference of label conditional inductive conformal predictors from
ICPs is that (6) is replaced by

py :=
|{i ∈ C | yi = y & αi ≤ αy}|+ 1

|{i ∈ C | yi = y}|+ 1
.

The following proposition is the label conditional version of Proposition 1.

Proposition 3 ([22], Proposition 4.10). Let Γ be a label conditional conformal
predictor or a label conditional inductive conformal predictor. If random ex-
amples Z1, . . . , Zl, Z = (X,Y ) are exchangeable, the conditional probability of
error Y /∈ Γϵ(Z1, . . . , Zl, X) given Y does not exceed ϵ for any ϵ.
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Label conditional cross-conformal predictors (abbreviated to CCCP, as this
is the only kind of conditional CCP that we consider) are defined as CCPs
except that (9) is replaced by

py :=

∑K
k=1 |{i ∈ Sk | yi = y & αi,k ≤ αy

k}|+ 1∑K
k=1 |{i ∈ Sk | yi = y}|+ 1

.

All experiments in this section are run on the Spambase data set. First we
check empirically whether CCCPs are well calibrated. Figure 3 shows separate
calibration plots for the test examples labelled as email and spam, both for
K = 10 folds. Both plots are close to the bisector of the first quadrant. This is
important as we are not really interested in the overall error rate: for example,
when using the predictor for spam filtering, first of all we want to get the amount
of email classified as spam down to an admissible low level, and only after that
we try to optimize the amount of spam classified as email. Moreover, in the
case of label conditional predictors nothing prevents us from having different
significance levels for email and spam: we can replace the ϵ in (1) by ϵy allowing
the significance level ϵy to depend on the label y ∈ Y.

Figure 4 gives the scatter plot of the pairs (p0, p1) for all test examples, where
p0 is the p-value when the example is labelled as email and p1 is the p-value
when it is labelled as spam. The following two tables (Table 4 and Table 5)
will give some summary information for the data represented in this figure. It
has been shown in [20] (see, e.g., Figure 8) that in the case of ICPs there is a
close connection between scatter plots of p-values and empirical ROC curves.
Figure 4 (and especially its right panel) shows that there are no similar close
connections in the case of CCPs.

Table 4 shows the “confusion matrices” for email and spam for the first
100 seeds of the pseudorandom number generator. It shows the mean p-values
for email in the test set when classified as email, for email in the test set when
classified as spam, for spam in the test set when classified as email, and for spam
in the test set when classified as spam. The p-values for email when classified
as email and for spam when classified as spam are distributed approximately
uniformly in the interval [0, 1], and so their means should be approximately 50%;
this is what Table 4 shows, confirming the approximate validity of the method.
The p-values for email when classified as spam and for spam when classified as
email should be small for informationally efficient prediction methods, and we
can see that indeed they never exceed 2% in Table 4 (and very rarely exceed
2% if the table is expanded by adding the missing values for the seeds 2–98).

Table 5 demonstrates the validity and informational efficiency of spam filters
based on 10-fold CCCPs with target probabilities 1%, 2%, and 5% of mistaking
email for spam. For a given target probability ϵ ∈ {0.01, 0.02, 0.05} the spam
filter classifies a test object as spam if and only if p0 ≤ ϵ (ignoring p1; remember
that 0 encodes email and 1 spam). The table confirms the validity of the CCCP
conditional on the label being email and gives an indication of its informational
efficiency (the amount of spam let in).

Figure 5 gives similar information about validity and informational efficiency

12
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Figure 3: Top panels: the separate calibration plots for the CCCP with K = 10
for the examples labelled as email (left) and spam (right) in the test set and for
the first 8 seeds of the pseudorandom number generator. Bottom panels: the
lower left corner of the corresponding top panel.

for all target probabilities ϵ ∈ (0, 1): the left panels confirm the label conditional
validity of our spam filters and the right panels can be regarded as measuring
their informational efficiency. (Notice that the left panels of Figures 3 and 5 are
identical.)
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Figure 4: The scatter plot of (p0, p1) for the CCCP with K = 10 folds, all
examples in the test set, and seed 0 of the pseudorandom number generator.
Email is shown as noughts and spam as crosses. Left panel: the full scatter plot
(with spam drawn before email). Right panel: its lower left corner.

Table 4: Mean (over the test set) p-values for email if classified as email,
for email if classified as spam, for spam if classified as email, and for spam
if classified as spam. The results are given for 100 values of the seed for the
pseudorandom number generator; column “Average” gives the averages of the
means over the 100 seeds 0–99, and column “St. dev.” gives the estimates of the
standard deviations of the means.

Seed 0 1 . . . 99 Average St. dev.

email as email 50.24% 48.61% . . . 49.41% 50.021% 1.133%
email as spam 1.44% 1.38% . . . 1.45% 1.590% 0.206%
spam as email 1.66% 1.56% . . . 1.63% 1.591% 0.251%
spam as spam 50.68% 49.93% . . . 50.97% 50.044% 1.644%

5 Conclusion

Conformal prediction and inductive conformal prediction are two approaches to
the theory of tolerance regions (see, e.g., [7]). The known validity results for
conformal and inductive conformal predictors can be expressed by saying that
they are 1 − ϵ expectation tolerance regions, where ϵ is the significance level
(see Proposition 1 above). It is also known ([20], Proposition 2a) that inductive
conformal predictors are 1−δ tolerance regions for a proportion 1−ϵ for suitable
δ and ϵ. On the other hand, at this time there are no theoretical results about
the validity of cross-conformal predictors, and it is an interesting open problem

14



Table 5: The percentage of misclassified email and spam in the test set for the
spam filters based on conditional cross-conformal prediction. The results are
given for various values of the seed for the pseudorandom number generator;
the last two columns give the averages and estimates of standard deviations.

Seed 0 1 . . . 99 Average St. dev.

email at 1% 0.97% 0% . . . 1.16% 0.999% 0.443%
spam at 1% 23.64% 26.14% . . . 16.88% 20.275% 2.582%
email at 2% 1.79% 1.81% . . . 1.82% 1.993% 0.617%
spam at 2% 12.47% 12.94% . . . 10.08% 12.211% 1.620%
email at 5% 4.55% 5.11% . . . 4.30% 4.861% 0.889%
spam at 5% 4.68% 5.08% . . . 5.04% 5.543% 0.954%

to establish such results.

Acknowledgments

The empirical studies described in this paper used the R system, MATLAB, the
R package gbm written by Greg Ridgeway (based on the work of Freund and
Schapire [8] and Friedman [9, 10]), and the C program for computing tangent
distance written by Daniel Keysers and adapted to MATLAB by Aditi Kr-
ishn. An extended abstract of an early version of this paper was published
in the Proceedings of the Fifth Workshop on Information Theoretic Meth-
ods in Science and Engineering (WITMSE 2012, Amsterdam, August 2012,
http://event.cwi.nl/witmse2012/proc.pdf). I am grateful to participants
in WITMSE 2012 and COPA 2012 (First Workshop on Conformal Prediction
and its Applications, Halkidiki, Greece, September 2012) for useful discussions.
In particular, Martin Eklund’s comments have been helpful in improving pre-
sentation. The advice of the reviewers of the journal version of the paper is also
gratefully appreciated. Charalambos Eliades’s helpful comments led to the in-
clusion of Remark 2. This work was partially supported by the Cyprus Research
Promotion Foundation.

References

[1] Vineeth N. Balasubramanian. Conformal Predictions in Multimedia Pat-
tern Recognition. PhD thesis, Arizona State University, December 2010.

[2] Vineeth N. Balasubramanian, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Conformal predictions for information fusion: A comparative
study of p-value combination methods. Annals of Mathematics and Artifi-
cial Intelligence, 74:45–65, 2015.

15



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors for email (validity)

significance level for email

er
ro

r 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Errors for spam (efficiency)

significance level for email

er
ro

r 
ra

te

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Errors for email (validity)

significance level for email

er
ro

r 
ra

te

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Errors for spam (efficiency)

significance level for email

er
ro

r 
ra

te

Figure 5: Top panels: the percentages of errors made by the spam filter based
on the CCCP with K = 10 on email (left) and spam (right) for different target
percentages of errors made on email and for the first 8 seeds of the pseudorandom
number generator. Bottom panels: the lower left corner of the corresponding
top panel.

[3] Leo Breiman and Philip Spector. Submodel selection and evaluation in
regression: the X-random case. International Statistical Review, 60:291–
319, 1992.

[4] Bradley Efron. Bootstrap methods: another look at the jackknife. Annals
of Statistics, 7:1–26, 1979.

[5] Bradley Efron. Estimating the error rate of a prediction rule: some improve-
ments on cross-validation. Journal of the American Statistical Association,
78:316–331, 1983.

16



[6] Ronald A. Fisher. Combining independent tests of significance. American
Statistician, 2:30, 1948. This is the answer to Question 14 in Frederick
Mosteller’s “Questions and Answers” column.

[7] Donald A. S. Fraser. Nonparametric Methods in Statistics. Wiley, New
York, 1957.

[8] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55:119–139, 1997.

[9] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2001.

[10] Jerome H. Friedman. Stochastic gradient boosting. Computational Statis-
tics and Data Analysis, 38:367–378, 2002.

[11] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer,
New York, second edition, 2009.

[12] Ron Kohavi. A study of cross-validation and bootstrap for accuracy es-
timation and model selection. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1137–1143, San Ma-
teo, CA, 1995. Morgan Kaufmann.

[13] Jing Lei, Alessandro Rinaldo, and Larry Wasserman. A conformal pre-
diction approach to explore functional data. Annals of Mathematics and
Artificial Intelligence, 74:29–43, 2015.

[14] Jing Lei and Larry Wasserman. Distribution free prediction bands. Tech-
nical Report arXiv:1203.5422 [stat.ME], arXiv.org e-Print archive,
March 2012. To appear in JRRSB.

[15] Frederick Mosteller and John W. Tukey. Data analysis, including statistics.
In G. Lindzey and E. Aronson, editors, Handbook of Social Psychology,
volume 2, pages 80–203. Addison-Wesley, Reading, MA, second edition,
1968.

[16] Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Qualified
predictions for large data sets in the case of pattern recognition. In Pro-
ceedings of the First International Conference on Machine Learning and
Applications, pages 159–163, Las Vegas, NV, 2002. CSREA Press.

[17] Patrice Simard, Yann LeCun, and John Denker. Efficient pattern recogni-
tion using a new transformation distance. Advances in Neural Information
Processing Systems, 5:50–58, 1993.

[18] Mervyn Stone. Cross-validatory choice and assessment of statistical predic-
tions (with discussion). Journal of the Royal Statistical Society B, 36:111–
147, 1974.

17



[19] Stijn Vanderlooy, Laurens van der Maaten, and Ida Sprinkhuizen-Kuyper.
Off-line learning with Transductive Confidence Machines: an empirical
evaluation. In Petra Perner, editor, Proceedings of the Fifth International
Conference on Machine Learning and Data Mining in Pattern Recogni-
tion, volume 4571 of Lecture Notes in Artificial Intelligence, pages 310–323,
Berlin, 2007. Springer.

[20] Vladimir Vovk. Conditional validity of inductive conformal predictors.
Technical Report arXiv:1209.2673 [cs.LG], arXiv.org e-Print archive,
September 2012. Journal version: Machine Learning (ACML 2012 Spe-
cial Issue), 92:349–376 (2013).

[21] Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and
Artificial Intelligence, 74:9–28, 2015. Online Resources 1 and 2 are available
from the journal web site (accessed in September 2024). The paper is also
published as arXiv report arXiv:1208.0806 [stat.ML]. To download the R
programs from arXiv, choose “Other Formats” and then “Source” in v1
(August 2012).

[22] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning
in a Random World. Springer, New York, first edition, 2005. A second
edition was published in 2022.

A Leave-one-out conformal prediction

In this appendix we consider the extreme case where the number of folds is equal
to the size of the training set, K = l. This special case of cross-conformal pre-
diction will be called leave-one-out conformal prediction, and the corresponding
predictors will be called leave-one-out conformal predictors (LOOCPs).

The method of leave-one-out conformal prediction is likely to have two disad-
vantages as compared with 5-fold or 10-fold cross-conformal prediction: first, it
is computationally less efficient, and second, it may lead to loss of informational
efficiency because of high variance caused by the similarity of the folds (as in
the standard method of cross-validation [3, 12]). We discuss it in this appendix
because of its conceptual simplicity; in particular, we will see that already in
this case the analogue of Proposition 1 fails.

Let l := 9 and consider the exchangeable probability measure assigning the
same probability 1/10! to each of the 10! permutations of a given sequence of 10
distinct examples z1, . . . , z10. The first 9 examples in a random permutation are
assigned to the training set and the last example is the test example. Suppose
the chosen conformity measure A is such that

A((z′1, . . . , z
′
8), z

′
9) ̸= A((z′1, . . . , z

′
8), z

′
10)

for any permutation z′1, . . . , z
′
10 of z1, . . . , z10. We will sometimes write A(ζ ′, z)

for A(ζ, z) where ζ ′ is the (multi)set consisting of all elements of ζ. (This
notation will be used only when all elements of ζ are distinct.)
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With the sequence z1, . . . , z10 and the conformity measure A we can associate
the 10×10 matrix B having 1 on the main diagonal and the off-diagonal elements

Bi,j :=

{
1 if A({z1, . . . , z10} \ {zi, zj}, zi) ≥ A({z1, . . . , z10} \ {zi, zj}, zj)
0 otherwise.

The binary relation with adjacency matrix B is reflexive, antisymmetric, and
total, but not necessarily transitive; we will identify B and this binary relation.
The probability of error of Γϵ, where Γ is the corresponding LOOCP and ϵ ∈
(0, 1), is the percentage of rows in B whose percentage of 1s is at most ϵ.

If the matrix B is transitive, it is a total order, and we can permute the
examples in such a way that it becomes

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1


. (13)

This shows that corresponding LOOCPs are unconditionally valid under our
probability measure. On the other hand, it is easy to give an example of a
non-transitive B that leads to a LOOCP that is not unconditionally valid: take,
e.g.,

B :=



1 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1


(14)

(reflecting a triangle in the lower left corner in the main diagonal of (13)).
Corresponding LOOCPs make an error with probability 1 when ϵ = 0.6. It is
clear that the idea works for any value of l.

We have just seen that unconditional validity can be violated for LOOCPs,
but it can be argued that in our example it is violated in a non-interesting way:
in practice people are interested in small values of ϵ. To see that unconditional
validity can be violated for small values of ϵ, take the analogue of (13) of size
100 × 100. Replacing the upper left 10 × 10 submatrix by (14), we obtain a
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probability measure and a LOOCP that makes an error with probability 10%
when ϵ = 6%.

B Bootstrap conformal prediction

In this appendix we study empirically the modification of the CCP based on
bootstrap ([4]; [5]; [11], Section 7.11). In the bootstrap conformal predictor
(BCP), the following procedure is repeated K times, for k = 1, . . . ,K. A
sample σk = (σk

1 , . . . , σ
k
l ) ∈ {1, . . . , l}l of size l (with replacement) is chosen

from the index set {1, . . . , l} of the training set z1, . . . , zl and used to compute
the conformity scores

αi,k := A(zσk , zi), i ∈ {1, . . . , l} \ Σk, αy
k := A(zσk , (x, y)),

for each potential label y ∈ Y, where z(σ1,...,σl) := (zσ1 , . . . , zσl
), Σk is the set of

chosen indices Σk := {σk
1 , . . . , σ

k
l } (as Σk is a set, all repetitions among its ele-

ments are eliminated), and A is a given conformity measure. The corresponding
p-values are defined by

py :=

∑K
k=1

∣∣{i ∈ {1, . . . , l} \ Σk | αi,k ≤ αy
k

}∣∣+ T/l

T + T/l
, (15)

where T :=
∑K

k=1(l −
∣∣Σk
∣∣) is the total size of the calibration sets z{1,...,l}\Σk .

(Notice that in (15) we have scaled up the constant 1 in (9) in proportion to the
increase in the total size of the calibration sets from l to T . For completeness,
we define (15) to be 1 in the rare cases where T = 0.) Confidence and credibility
are now defined as usual.

Figure 6 shows that the BCP with K = 10 samples is, like the CCP, em-
pirically well calibrated on our data set (for the analogous plots corresponding
to K = 5 folds in this and following figures, see Online Resource 1 of the jour-
nal version [21]). For results about the informational efficiency of the BCP see
Table 6. They are not as good as for the CCP in Table 1, and comparable to
the results for the ICP. Increasing the number K of samples might improve the
informational efficiency but would adversely affect the computational efficiency.

A popular modification of bootstrap is its randomized version ([5], Section 4).
The randomized version of the BCP is defined similarly: the only difference
from the basic version described earlier is that the labels of the examples in
the bootstrap sample zσk are flipped with probability 0.1 independently before
computing the conformity scores. (This assumes a binary classification prob-
lem, which is the case for the Spambase data set, and flipping a label means
replacing it by the other label.) The randomized version is even less informa-
tionally efficient than the basic version (cf. Tables 6 and 7), but it is interesting
that the randomization affects not only the efficiency but also validity of the
BCP: the lack of calibration in Figure 7 is obvious (although far from being as
pronounced as in Figure 8 below). Figure 7 also explains the lack of informa-
tional efficiency of randomized BCPs as compared to basic BCPs: the former
are overly conservative for small significance levels.
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Figure 6: Left panel: the calibration plots for the 10-fold BCP, the Spambase
data set, and the first 8 seeds for the pseudorandom number generator. Right
panel: the lower left corner of the left panel.

Table 6: The analogue of part of Table 1 for the BCP.

Seed 0 1 . . . 99 Average St. dev.

mean confidence, K = 10 99.17% 99.21% . . . 99.23% 99.166% 0.061%
mean credibility, K = 10 50.96% 49.78% . . . 50.74% 50.791% 0.912%

C An approach based on Fisher’s method

In this appendix we will briefly discuss an approach to cross-conformal pre-
diction leading to badly miscalibrated set predictions. Fisher’s method [6] of
combining p-values p1, . . . , pK , valid when the K p-values are independent and
distributed uniformly on [0, 1], combines them into one statistic −2

∑K
k=1 ln pk

having the chi-squared distribution with 2K degrees of freedom. The corre-

Table 7: The analogue of Table 1 for the randomized BCP.

Seed 0 1 . . . 99 Average St. dev.

mean confidence, K = 10 98.94% 98.92% . . . 98.91% 98.917% 0.073%
mean credibility, K = 10 51.68% 50.12% . . . 50.51% 50.925% 0.820%
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Figure 7: The analogue of Figure 6 for the 10-fold randomized BCP.

sponding p-value will be denoted F (p1, . . . , pK):

F (p1, . . . , pK) := P

(
χ2 ≥ −2

K∑
k=1

ln pk

)
, (16)

where χ2 is a random variable having the chi-squared distribution with 2K
degrees of freedom. Even when the independent p-values are not distributed
uniformly on [0, 1] (i.e., they can be conservative, as is the case in our appli-
cations), F (p1, . . . , pK) will still be a valid (perhaps conservative) p-value. See
[2], Section 3, for a review of various methods of combining p-values.

Naive cross-conformal predictors are defined as follows. The training set is
split into K subsets, as in the case of CCPs. For each k ∈ {1, . . . ,K} find the
p-values pyk via (10). Define py := F (py1, . . . , p

y
K), and then define confidence,

credibility, and set predictors (1) as before. In other words, naive CCPs are
defined in the same way as CCPs except that the function F is defined by
(16) rather than by the expression following the = in (11) (assuming equally-
sized folds). Figure 8 is the analogue of the two left panels of Figure 2 for
naive CCPs. The set predictions are very poorly calibrated, since the p-values
computed from different folds are heavily dependent. We do not give the results
about informational efficiency (such as those given in Table 1) for the naive
CCP since efficiency without validity (at least approximate) is meaningless.

Applying methods of combining independent p-values to dependent p-values
does not always lead to poor calibration: see, e.g., [1], Chapter 5, and [2],
where p-values extracted from visual and audio inputs are combined. Such
p-values are somewhat dependent (in the statistical sense), but the empirical
results reported in [2], Section 4, show that we still have approximate validity
for several standard methods of combining independent p-values (including the
method referred to as ECF in [2] and corresponding to Fisher’s method). But
as Figure 8 shows, Fisher’s method leads to gross miscalibration in the context
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Figure 8: The analogue of Figure 6 for the 10-fold naive CCP.

of cross-conformal prediction.
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