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Abstract

The subject of this chapter is conformal predictive distributions, which rep-
resent the only approach to nonparametric fiducial prediction that is available
at this time. It starts from reviewing parts of traditional fiducial inference that
are relevant to conformal predictive distributions and places the latter in the
more general context of fiducial prediction. Among key desiderata for fiducial
prediction procedures are their validity and efficiency; the first is usually at-
tained automatically, and the other one require careful design. We will discuss
various formalizations of these desiderata.

The requirement to present results of the process of prediction in the form
of predictive distributions imposes severe restrictions on the process and is not
always possible or even desirable. At the end of the chapter we discuss the wider
area of conformal prediction, whose predictions can be interpreted as families of
p-values; we no longer insist on the kind of consistency of the p-values implicit
in conformal predictive distributions.
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1 Introduction

The most developed approach to nonparametric fiducial prediction is via con-
formal predictive distributions, and these are the main subject of this chapter.
We start in Section 2 from reviewing parts of traditional fiducial inference that
are relevant to conformal predictive distributions. At the end of the section we
discuss key desiderata for fiducial prediction, validity and efficiency.

Fiducial prediction in the nonparametric setting was at least implicit in
Fisher’s work, and has been greatly developed in the work of Dempster, Hill,
and Coolen. It will be the topic of Section 3, where we describe what we call the
Dempster–Hill procedure and embed it into fiducial prediction by expressing it
in terms of a randomized pivot.

What makes (supervised) machine learning a powerful practical approach
to various kinds of prediction problems is that it deals with observations that
are pairs (x, y), where x is a potentially complicated object (such as a movie,
or all available information about a patient) and y is an associated label (such
as a movie’s sales figures). In nonparametric fiducial prediction, as developed
in statistics, the xs are absent and the observations are just the ys. Conformal
predictive distributions add the objects x to the Dempster–Hill picture, which
only involves the labels y. This is discussed in Section 4.

Conformal predictive distributions can be derived only under serious re-
strictions. Getting rid of these restrictions extends their application area and
logically leads to the more general area of conformal prediction, which is the
topic of Section 5. In that section we will also discuss a generalization of con-
formal prediction to general repetitive structures (including many of the models
considered by Fisher in his parametric fiducial inference) and its application to
online methods of hypothesis testing.

We will not make notational distinction between random variables and their
possible values, which should always be clear from context. The phrase “uni-
formly distributed on the interval [0, 1]” (applied to a random variable) will
sometimes be abbreviated to “uniformly distributed” or even “uniform”.

2 Parametric fiducial prediction

Fisher’s fiducial inference, at least in his publications, can be divided into two
parts (not strictly disjoint). One part concerns inference about the parameters
of the unknown true distribution generating the data. This part is controversial
and is often regarded as Fisher’s greatest blunder [12]. Now it has been revived
under the name of confidence distributions (see, e.g., [37] and [52]), but it is
still common to deemphasize connections with Fisher’s ideas, to stay away from
controversy. This chapter is about the other part of fiducial inference, namely
inference about future observations, or fiducial prediction. This part remains
feasible even without parametric assumptions.

Fiducial prediction is much less prominent in Fisher’s oeuvre, and it is much
less controversial. This section reviews Fisher’s work and some other closely
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related work in this area.

Remark 1. In this chapter we only consider the simple case of predicting one
future observation, although Fisher and later authors are sometimes interested
in predicting several future observations (which may blur the difference between
fiducial prediction and fiducial inference about parameters, since in many inter-
esting cases parameters can be recovered as limiting values of some function of
k future observations as k →∞).

2.1 Fisher’s fiducial prediction

Fisher’s two main publications that discuss fiducial prediction are his 1935 paper
[15] and his 1956 book [19]. One of the examples in his 1935 paper (Section II)
is particularly simple, treating the Gaussian IID model (in this chapter the ad-
jective “IID” signals being related to a sequence of independent and identically
distributed random variables, but rarely simply stands for “independent and
identically distributed”). Consider an IID sequence of observations y1, y2, . . . ,
each observation distributed as yi ∼ N(µ, σ2) with unknown mean µ and vari-
ance σ2. After observing IID y1, . . . , yn (our past data ypast) we can compute

ȳ :=
1

n

n∑
i=1

yi, s2 :=
1

n− 1

n∑
i=1

(yi − ȳ)2.

Then

t :=

√
n

n+ 1

yn+1 − ȳ
s

, (1)

where yn+1 is the next observation, has Student’s t-distribution with n − 1
degrees of freedom; such a statistic with an invariant (independent of the pa-
rameters) distribution is known as a pivot.

Once we have a pivot, we can project its distribution onto the next observa-
tion. For example, if ε ∈ (0, 1) is our target probability of error, we may predict
that the pivot will be in the interval (F tn−1(ε/2), F tn−1(1 − ε/2)), where F tn−1
is the t-distribution function with n − 1 degrees of freedom. This gives us the
prediction

yn+1 ∈
(
ȳ + sF tn−1(ε/2), ȳ + sF tn−1(1− ε/2)

)
(2)

for the next observation. This set prediction is valid in the sense that it is
correct with probability 1− ε.

The general scheme of fiducial prediction in Fisher’s work is that we combine
the past observations ypast and future observation y to obtain a pivot U ,

U := Q(ypast, y).

The distribution of U is independent of the parameters, and without loss of
generality we can assume that U is uniformly distributed (on [0, 1]), at least
when it is continuous: if not, replace U by FU (U), where FU is U ’s distribution
function.
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The existence of, and using, a pivot is a hallmark of fiducial inference.
Fisher’s approach was invariably direct, in that he saw the pivot immediately,
without any auxiliary tools. Some kind of normalization was used to get rid
of the parameters. For example, in the case of (1), we get rid of the location
parameter µ by subtracting ŷ from the future observation, and we get rid of the
scale parameter σ by dividing the difference by s. In future sections, where we
consider nonparametric situations, pivots will be derived indirectly via condi-
tioning on sufficient statistics.

If y ∈ R and uniformly distributed Q(ypast, y) is increasing in y, y 7→
Q(ypast, y) will often be a distribution function, and we may call it the fidu-
cial (predictive) distribution. In Fisher’s example (1), the pivot

t =

√
n

n+ 1

y − ȳ
s

becomes the fiducial (predictive) distribution (function)

Q(ypast, y) := F tn−1

(√
n

n+ 1

y − ȳ
s

)
. (3)

Therefore, a fiducial predictive distribution can be defined simply as a uni-
form pivot, provided the pivot is a distribution function (i.e., is increasing from
0 to 1 over (−∞,∞)). Notice that no explicit “fiducial inversion” is needed in
this exposition (unless we want prediction sets).

Fisher imposed some further restrictions in both fiducial prediction and non-
predictive fiducial inference, emphasizing both continuity (in many publications)
and monotonicity (in 1962 in letters to Barnard and Sprott [4, pp. 44, 218–219],
for parametric fiducial inference). In a non-predictive context, he writes in his
last letter to Barnard in March (?) 1962 (Bennett [4, p. 44] and Barnard [3];
the question mark is Bennett’s):

A pivotal quantity is a function of parameters and statistics, the
distribution of which is independent of all parameters. To be of any
use in deducing probability statements about parameters, let me add

(a) it involves only one parameter,

(b) the statistics involved are jointly exhaustive for that parameter,

(c) it varies monotonically with that parameter.

The publications where Fisher prominently mentions continuity includes his
1956 book [19] (“the observations should not be discontinuous”).

Even if the pivot is increasing in the future observation, there is still a
possibility that it will fail to be a distribution function. Namely, there is no
guarantee that Q(ypast,−∞) = 0 and Q(ypast,∞) = 1 is satisfied for all ypast.
For example, Q(ypast,−∞) > 0 means that there is a positive mass at −∞.
Using the pivot for computing prediction sets is more flexible.
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2.2 Validity and efficiency of fiducial prediction

Probabilistic forecasting has become very popular in many application areas,
such as economics and weather forecasting (see, e.g., [21, Subsection 1.1]). The
most fundamental property of validity is probabilistic calibration, promoted by,
among others, Philip Dawid [9] and Tilmann Gneiting (see, e.g., [21, Definition
3(b)]). In general, a random distribution function Q is probabilistically calibrated
if the random variable

Q(ypast, y−) + τ
(
Q(ypast, y)−Q(ypast, y−)

)
has a uniform distribution on [0, 1] provided τ is a uniform random variable
that is independent of the past and future observations ypast and y. In Fisher’s
continuous case probabilistic calibration simply means the uniform distribution
of Q(ypast, y) and, therefore, is achieved automatically. In fact this simplified
understanding of probabilistic calibration will be sufficient in the whole of this
chapter, even when we move on to the Dempster–Hill procedure and conformal
predictive distributions.

Probabilistic calibration may be the most fundamental notion of validity,
but there are several other requirements of this kind, such as marginal cali-
bration [21, Definition 3(a)]. The strongest requirement of validity would be
that Q(ypast, y) have the uniform distribution given the σ-algebra generated by
the past observations ypast. Such strong validity is attainable only with the
full knowledge of the stochastic mechanism generating the data (such as under
Bayesian assumptions). But we might hope to achieve the uniformity of the
distribution of Q(ypast, y) given a smaller σ-algebra F . An interesting example
of such conditional probabilistic calibration is due to Peter McCullagh [33, 34].
Our model is that of linear regression

yi = β · xi + σξi, (4)

where xi are fixed vectors in Rp, β ∈ Rp is a vector of parameters, σ > 0
is another parameter, and ξi are IID noise random variables with a known
distribution P (which does not have to be Gaussian). Let F be the σ-algebra
of events invariant under the transformations (y1, y2, . . . ) 7→ (a · x1 + by1, a ·
x2 + by2, . . . ), a ∈ Rp being a vector and b > 0 a positive number. Then the
fiducial predictive distribution constructed by McCullagh is probabilistically
calibrated given F . Intuitively, the σ-algebra F corresponds to forgetting just
p+ 1 numbers, where, remember, p+ 1 is the total number of parameters.

Fisher was motivated by a search for fiducial statements that “may claim
unique validity” [35, footnote in Fisher’s comment]. He was not satisfied with
fiducial statements that were merely true (or valid), he wanted them to be the
whole truth.

This was the reason for his introduction of various restrictions, such as the
use of exhaustive statistics, as in his letter to Barnard. The insistence on unique
validity, leading to serious difficulties and numerous paradoxes, was perhaps the
main reason for the rejection of fiducial inference by many statisticians. In
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various extensions of fiducial inference (such as by Hannig [23]) the requirement
of uniqueness has been abandoned. To compare various valid procedures we
then need additional desiderata. An appealing statement of the overall goal of
probabilistic forecasting is due to Gneiting and his co-authors (see, e.g., [21,
Section 1.2]):

Probabilistic forecasting has the general goal of maximizing the
sharpness of predictive distributions, subject to calibration.

The idea is that validity is the requirement of agreement between the predictive
distributions and the actual observations (they should tell the truth), whereas
the sharpness characterizes the predictive distributions only (measures how con-
centrated they are). More generally, instead of the sharpness we can also talk
about the efficiency of predictive distributions (the truth should be informative,
even if it is not the whole truth), without insisting that the efficiency does not
depend on the actual observations. This leads to Martin and Liu’s [31, Section
3.3] efficiency principle:

Subject to the validity constraint, probabilistic inference should be
made as efficient as possible.

3 Dempster–Hill procedure

This section makes a first step towards nonparametric prediction. In the non-
parametric setting Fisher’s requirement of continuity becomes unnecessary if we
are allowed to randomize (at least a little).

3.1 Fisher’s nonparametric fiducial inference

There are only hints of nonparametric fiducial prediction in Fisher’s work [39],
but numerous authors trace their ideas in this area to Fisher: see, e.g., Dempster
1963 [10], Lane and Sudderth 1984 [28], Hill 1992 [26], and Coolen 1998 [8].

However, Fisher definitely introduced nonparametric fiducial inference for
parameter values. In [17] he traced the idea back to Student. In the case of two
observations y1 and y2 from N(µ, 1), the probability that µ < y(1) is 1/4, the
probability that µ ∈ (y(1), y(2)) is 1/2, and the probability that µ > y(2) is 1/4,
where y(1) := min(y1, y2) and y(2) := max(y1, y2) are the order statistics. In that
paper Fisher extended this statement to an arbitrary sample size n and to the
pth quantile µp (dropping the Gaussian assumption). Another extension, stated
in [17] and in his 1948 paper [18, Subsection 4.VII], is to simultaneous inference
about several quantiles µp. In view of Remark 1, this may be regarded as a
kind of prediction, namely predicting some features of infinitely many future
observations.
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3.2 Dempster–Hill procedure

Genuine nonparametric fiducial prediction may be said to have started by Jef-
freys in his 1932 paper [27]. He discussed a very special case, predicting a third
observation (but it was sufficient for his goal of justifying his noninformative
prior for the parameter 1/σ of the Gaussian family N(µ, σ2)). Assuming (im-
plicitly) IID observations y1, y2, . . . from a continuous distribution, what is the
probability that y3 ∈ (y1, y2)? According to Jeffreys, the answer is easily seen
to be one-third. Indeed, all orders of observations in {y1, y2, y3} (assumed dif-
ferent) have the same probability, and the middle observation (not the largest
and not the smallest) will be y3 with probability 1/3.

Fisher [14] did not accept Jeffreys’s argument, let alone accept it as fiducial.
One reason might be that Jeffreys did not use the fiducial language (this was
done by Seidenfeld in 1995 [38]) and instead couched it in improper Bayesian
terms, which Fisher did not like. But another important reason may be that
Jeffreys’s argument was blatantly discontinuous. We may consider the rank of
y3 as pivot, but we can’t even say that it is approximately continuous (which
will often be the case for the general Dempster–Hill procedure), since there
are only three observations in Jeffreys’s picture. In his later paper [16, p. 51]
(1935) Fisher did introduce the device of randomization to turn “a discontinu-
ous distribution, leading to statements of fiducial inequality, into a continuous
distribution, capable of yielding exact fiducial statements”, but he never recon-
sidered his rejection of Jeffreys’s argument.

Jeffreys’s procedure is a special case of what I will call the Dempster–Hill
procedure; the latter extends the former to the case of any finite number of
observations and any interval between adjacent observations. Dempster [10,
(5.7)] derives it by modifying Fisher’s fiducial argument into what he calls a
direct probability argument. Dempster makes it look as if his method is known,
but he refers to Wilks [51, Chapter 11], who describes prediction intervals rather
than predictive distributions. Hill [24,25] refers to the Dempster–Hill procedure
as An; this is the statement that, given the data y1, . . . , yn, the probability that
the next observation y falls in (y(i), y(i+1)) is 1/(n+ 1), for each i = 0, . . . , n; by
definition, y(0) := −∞, and y(n+1) :=∞.

As already mentioned, both Dempster and Hill trace their ideas back to
Fisher. In his 1992 paper [26] Hill writes:

Note that for all three of these authors [Student, Fisher, Dempster]
the justification for An seems to be purely intuitive. Thus none give
anything vaguely representing a “proof” for An. . . .

Hill [25] also referred to his procedure as Bayesian nonparametric predictive
inference. This was abbreviated to nonparametric predictive inference (or NPI )
by Frank Coolen [1, 2], which makes it very wide; in fact, this whole chapter
belongs to the area of nonparametric predictive inference.

To embed the Dempster–Hill procedure into fiducial prediction, let us de-
fine formally a continuous pivot. As usual, we can achieve continuity by using
randomization: if τ is distributed uniformly on [0, 1] and is independent of the
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Figure 1: Sample predictive distribution

observations, the Dempster–Hill pivot

Q(ypast, y, τ) :=
|{i | yi < y}|+ τ + τ |{i | yi = y}|

n+ 1
(5)

(i ranging over {1, . . . , n}, where n is the number of past observations) is dis-
tributed uniformly on [0, 1]. The last addend in the numerator in (5) takes care
of possible ties, but even in the continuous case we need the penultimate addend
to achieve the uniformity of the distribution. For large n, the distribution will
be approximately uniform even if we ignore τ (say, set τ := 0 or τ := 1).

As function of y, Q(ypast, y, τ) as defined by (5) can be considered to be
a predictive distribution; for a large number n of past observations it is an
approximate distribution function. An example of such a predictive distribution
is given in Figure 1. The horizontal axis is y, and the vertical axis gives the
interval of the values Q(ypast, y, τ) for all τ ∈ [0, 1], where the past observations
ypast are fixed.

3.3 Validity and efficiency of the Dempster–Hill proce-
dure

As other fiducial procedures, the Dempster–Hill procedure is automatically valid
in that the pivot (5) is distributed uniformly on [0, 1]. As for its efficiency, we
do not really need it in this section for the purpose of comparison, since the
Dempster–Hill procedure is uniquely determined (efficiency will become impor-
tant in the next section, where this procedure will be greatly generalized). Still
the efficiency of the Dempster–Hill procedure in the sense of the closeness of the
empirical distribution function to the true data-generating distribution function
has been extensively studied under the rubric of empirical processes (see, e.g.,
[41]).
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4 Conformal predictive distributions

As mentioned in Section 1, a serious limitation of the Dempster–Hill procedure
is that it does not cover typical problems of machine learning, such as regression
and classification, where the observations are pairs (x, y) and not just the labels
y; the task is to predict the unknown label y of a test object x. The procedure
has been criticized on this account; e.g., Genest and Kalbfleisch [20] say in their
response to Berliner and Hill [5]: “To be truly useful, however, the methods
need extension to regression models with unknown regression parameters”.

In most of the rest of this paper our statistical model will be the one standard
in machine learning and much of nonparametric statistics: the observations are
assumed to be IID (and nothing more is assumed). We will refer to it as the IID
model (or hypothesis of randomness). There are several related ways, treated
in Subsections 4.1 and 4.2, to construct a conformal pivot, a random variable
that is distributed uniformly on [0, 1] (under the IID model) and can be used
as a predictive distribution (conformal predictive distribution).

While the Dempster–Hill distributions are uniquely determined, there is a
huge variety of conformal predictive distributions. For example, outputs of
many prediction algorithms in machine learning and statistics can be turned
(usually in more than one way) into predictive distributions.

In this section we consider the case of regression, where the labels y are
real numbers, y ∈ R; the objects x are elements of a measurable space (often
Euclidean space Rp).

4.1 Full conformal predictive distributions

A conformity measure is a measurable function A mapping finite sequences
of observations (z1, . . . , zl) to conformity scores (α1, . . . , αl) (sequences of real
numbers of the same length) that is equivariant: for any l and any permutation
π of {1, . . . , l},

A(z1, . . . , zl) = (α1, . . . , αl) =⇒ A
(
zπ(1), . . . , zπ(l)

)
=
(
απ(1), . . . , απ(l)

)
.

The origin of the terminology is that αi measures how well zi conforms to the
other observations among z1, . . . , zl. In many cases we can build A on top of
some underlying algorithm. A simple example is where the conformity scores
are defined by

αi := yi − ŷi, (6)

where ŷi is the prediction for the label of xi produced by a prediction algo-
rithm trained on z1, . . . , zl. Another example, that might better agree with the
terminology, is

αi := − |yi − ŷi| . (7)

The conformal pivot determined by a conformity measure A is

Q(zpast, (x, y), τ) :=
|{i | αyi < αy}|+ τ + τ |{i | αyi = αy}|

n+ 1
, (8)
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where zpast is a sequence z1, . . . , zn of observations of length n (our training
sequence), i = 1, . . . , n,

(αy1 , . . . , α
y
n, α

y) := A(z1, . . . , zn, (x, y)), (9)

and τ ∈ [0, 1]. For a proof that the distribution of Q(Zpast, Y ) is uniform
on [0, 1], provided τ is distributed uniformly on [0, 1] and independent of the
observations, see, e.g., [46, Proposition 2.4].

Notice that the direct implementation of (8) involves heavy computations,
even if we limit ourselves to a finite grid of values for the label y (which can be
done rigorously in some cases [6]). If we have several test objects x for which we
would like to have predictive distributions, we need to recompute all the n+ 1
conformity scores (9) for each possible value of y and for each test object x.

We say that (8) is a conformal predictive system if:

� Q(zpast, (x, y), τ) is an increasing function of y ∈ R (by definition it is an
increasing and linear function of τ);

� for each training sequence zpast and each test object x,

lim
y→−∞

Q(zpast, (x, y), 0) = 0 (10)

lim
y→∞

Q(zpast, (x, y), 1) = 1. (11)

In this case we will say that Q(zpast, (x, y), τ) as function of y is a conformal
predictive distribution.

With a careful choice of the conformity measure A the conformal pivot will
be an efficiently computable conformal predictive system. A trivial example is
where A strips a sequence of observations of the objects:

A ((x1, y1), . . . , (xl, yl)) := (y1, . . . , yl)

(or, alternatively, we have no objects and A is the identity function). In this
case we obtain the Dempster–Hill pivot (5).

Our first nontrivial example is the Least Squares Predictive Machine
(LSPM). This is the case of the conformity measure (6), where ŷi is the
Least Squares (LS) estimate of the label of ith object, which is assumed to be a
vector in Rp. The answer to the question of monotonicity of the conformal pivot
in y depends on the details of the definition of the LS estimate [50, Section 3]:

� If ŷi is the LS estimate based on all of z1, . . . , zl (so that αi is the “full
residual”), monotonicity can be violated (albeit only in pathological cases
of a high-leverage test object x).

� If ŷi is the LS estimate based on z1, . . . , zl with zi removed (so that αi
is the “deleted residual”), monotonicity can be violated (albeit only in
pathological cases of high-leverage training objects in zpast).
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� But in an intermediate situation (of a “studentized residual” αi), mono-
tonicity always holds.

Therefore, only the studentized LSPM is a conformal predictive system [50,
Proposition 5]. Its predictions (conformal predictive distributions) can be com-
puted in time O(n2 + kn), where n is the length of the training sequence and
k is the length of the test sequence (preprocessing takes time O(n2) and then
processing each test object takes time O(n)).

Fisher’s idea of using exhaustive statistics to obtain uniquely valid predictive
distributions does not work at all in the case of conformal predictive systems.
Even when constructing a conformity measure from an underlying algorithm,
we have plenty of choice, and arguably some underlying algorithms available
in machine learning may involve an element of intelligence (such as artificial
neural networks). The variety of conformal predictive systems is real, all of
them are valid (in the sense of being probabilistically calibrated), and we need
some notion of efficiency to distinguish between them. Fisher’s whole truth
[35, footnote in Fisher’s comment] is usually not attainable.

A useful notion of efficiency for a conformal predictive system is how close the
predictive distributions that it outputs are to the true predictive distributions.
One way to answer this question is to impose strong assumptions on the data-
generating distribution. In the case of the LSPM, it is natural to assume the
model (4), where ξi are IID standard Gaussian random variables, in which case
we will refer to it as the Gauss linear model. Under this parametric assumption,
we can construct nearly optimal, or oracular, predictive distributions, and it
turns out that, under natural regularity conditions, the conformal predictive
distributions output by the LSPM and the oracular predictive distributions
approach each other at the usual rate O(n−1/2): see [50], Theorems 2–4.

Why are such efficiency results useful? Can’t we just use the oracular pre-
dictive distributions? This would be risky in situations where we are willing
to accept the nonparametric IID model but reluctant to accept the parametric
Gauss linear model. We have validity under the IID model, so the conformal
predictive distributions will not be misleading (at worst they will be useless).
But if we are lucky and the Gauss linear model also holds, we will quickly
approach the true predictive distributions.

The LSPM provides an example of the procedure of conformalization. We
take a point prediction procedure, Least Squares, that is optimal, in some sense,
under the Gauss linear model. Then we pass it through the “conformal machine”
(8)–(9) to obtain guaranteed validity under the IID model.

A disadvantage of the LSPM is that its underlying prediction algorithm,
Least Squares, is linear, and therefore, the LSPM is likely to be efficient only
when the true relation between the labels and objects is linear. A method of
extending linear methods to nonlinear situations that is standard in machine
learning is to apply a feature mapping to the objects, which corresponds to
replacing the dot product by another kernel in the object space. The LSPM
can be “kernelized” in this way while maintaining its computational efficiency
[47]. Pre-processing a training sequence of length n takes, asymptotically, the
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same time as inverting an n × n matrix (O(n3) with the schoolbook method)
and, after that, processing a test object takes time O(n2).

If we are only interested in a weak form of asymptotic efficiency of conformal
predictive distributions, their universal consistency, there is no need to adopt
narrow statistical models such as the Gauss linear model, and it holds under
the IID model for a suitable conformity measure [42, Theorem 28]. Universally
consistent conformal predictive systems can be built on top of many classical
universally consistent algorithms, such as nearest neighbours, and their con-
struction adapts standard arguments for universal consistency in classification
and regression [11,22,40].

An advantage of predictive distributions over other, less complete, forms of
prediction is that in decision-making problems predictive distributions can be
combined with a utility function and the expected utility maximization principle
to obtain optimal decisions. Using the predictive distributions produced by a
universally consistent predictive system leads, under natural conditions, to de-
cisions whose regret tends to 0 in probability under the IID model [44, Theorem
3].

4.2 Split-conformal and cross conformal predictive distri-
butions

As mentioned earlier, conformal predictive distributions, also called full confor-
mal predictive distributions, are difficult to compute apart from a small number
of conformity measures that are particularly mathematically tractable. It may
also be difficult to check that a full conformal pivot is an increasing function of
the label. Both problems simplify drastically if we have enough data.

A split-conformity measure is a measurable function A that maps an ob-
servation z and a sequence of observations z1, . . . , zl into a conformity score
A(z; z1, . . . , zl) ∈ R; intuitively, the conformity score shows how similar z is to
the elements of the sequence z1, . . . , zl. An example is again given by (6), which
in our current notation becomes

A((x, y); z1, . . . , zl) := y − ŷ, (12)

where ŷ is the prediction for the label of x produced by a prediction algorithm
trained on z1, . . . , zl.

Let us divide the training sequence zpast = (z1, . . . , zn) into two parts:

� the training sequence proper, z1, . . . , zm, of length m,

� and the calibration sequence, zm+1, . . . , zn, of length n−m.

The split-conformal pivot for a test object x is

Q(zpast, (x, y), τ) :=
|{i | αi < α}|+ τ + τ |{i | αi = α}|

n−m+ 1
, (13)

where i ranges over m+ 1, . . . , n and

αi := A(zi; z1, . . . , zm), α := A((x, y); z1, . . . , zm). (14)
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It is easy to construct computationally efficient split-conformal pivots. For
example, if the split-conformity measure is (12), there is no need to retrain the
underlying prediction algorithm for each calibration and test object.

It is also easy to ensure that the split-conformal pivot Q(zpast, (x, y), τ) is an
increasing function of y: it is enough to require that A((x, y); . . . ) is increasing
in y. If, in addition, the convex closure of A((x,R); . . . ) does not depend on x,
the split-conformal pivot will satisfy (10)–(11), in which case it is called a split-
conformal predictive system and its output is called a split-conformal predictive
distribution. For details, see [48, Section 3].

Split-conformal predictive systems are computationally efficient but may lose
predictive efficiency as compared with full conformal predictive systems, which
use the full training sequence as both training sequence proper and calibration
sequence. A natural way out is to divide the training sequence into a number
of folds (as in cross-validation), use each fold in turn as calibration sequence,
and combine the corresponding split-conformal predictive distributions. The
resulting cross-conformal predictive distributions [48, Section 4] lose guaran-
teed validity but are well-calibrated in practice (in the absence of excessive
randomization in the underlying algorithm [30, 48]). Under a suitable choice
of a split-conformity measure, split-conformal and cross-conformal predictive
distributions are universally consistent [48, Theorem 7.2].

One limitation of the conformity measure (6) and the split-conformity mea-
sure (12) is that they implicitly assume homoscedasticity. As a result, the
predictive distributions for all test objects are, essentially, horizontal translates
of each other (even though the shape of the predictive distribution can be very
adaptive, as is the case for the kernelized LSPM [47] with a universal kernel).
We can generalize, e.g., (12) to

A((x, y); z1, . . . , zl) :=
y − ŷ
s

,

where s > 0 is an estimate, based on z1, . . . , zl and x, of the accuracy of the
prediction ŷ for the label of x. This will still produce essentially the same shape
of the predictive distributions, and we will just add a scale parameter.

The split-conformal (and by extension cross-conformal) method allows a
much more radical solution. As split-conformity measure we can take

A((x, y); z1, . . . , zm) := F (y),

where F is a predictive distribution function, not required to satisfy any proper-
ties of validity under the IID model, for the label of x computed from z1, . . . , zm
as training sequence. Examples of possible F are the Nadaraya–Watson proce-
dure [36], random forest regression, procedures in the TensorFlow probability
module, and various Gaussian processes. See [49] for experimental results. This
gives another example of conformalization; the application of the split-conformal
machine (13)–(14) ensures the validity under the IID model.
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5 Conformal prediction

The requirement of monotonicity of conformal pivots in the label is restrictive
and dropping it greatly extends the application area of the conformal method.
For example, it then extends immediately to the case of classification, where the
label is only allowed to take values in a finite set (which does not even have to
be ordered). Instead of probability distributions we only have p-values, (8) or
(13) (they are valid p-values since they are distributed uniformly on [0, 1]). In
order for p-values to become probabilities (to form a distribution function, at
least approximate) we need to impose strict discipline, first of all monotonicity,
but even mere p-values have many important uses.

The step from conformal predictive distributions to p-values is somewhat
similar to the steps from fiducial distributions for parameter values to Neyman’s
confidence intervals [35] and from fiducial predictive distributions to prediction
intervals (e.g., from (3) to (2)). The theory simplifies and generalizes. We lose
something but enough survives. Our goal is still to design prediction algorithms
that are automatically valid and, under the constraint of validity, are as efficient
as possible, in various formal and informal senses.

In this section we will concentrate on full conformal prediction, although
many ideas can be extended to split-conformal and cross-conformal prediction.
We will refer to the system of p-values (8) (without further requirements such
as monotonicity) as conformal predictor.

5.1 Validity of conformal prediction

We know that conformal predictors are valid in the sense of (8) being distributed
uniformly on [0, 1]. This allows us to compute prediction sets with a guaranteed
probability of error; e.g., defining the prediction set as the set of all labels
leading to a p-value greater than a fixed significance level ε ∈ (0, 1) ensures
the probability of error ε. (In order to obtain a bounded prediction interval we
should use (7) rather than (6).)

This property of validity can be strengthened in the online prediction pro-
tocol. In this protocol, the observations zn = (xn, yn), n = 1, 2, . . . , arrive
sequentially, and at the nth step we predict the label yn+1 of xn+1 given xn+1

itself and the previous observations zpast := (z1, . . . , zn). It turns out that the
p-values pn := Q(zpast, (xn+1, yn+1), τn) are independent provided the uniform
random numbers τn are independent between themselves and of the observations
[46, Proposition 2.4]. Therefore, by the law of large numbers, the guaranteed
probability of error for the prediction set will be reflected in the frequency of
errors.

5.2 Efficiency of conformal prediction and training con-
formal predictors

The question of measuring the efficiency of conformal predictors is difficult, and
during the short history of conformal prediction several unsuitable measures
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have been used. In the case of classification, a natural desideratum for a criterion
of efficiency is that the true conditional probability of the label y of an object
x should be an ideal conformity measure as evaluated by that criterion. This
desideratum is formalized in [45, Section 4] and criteria of efficiency that satisfy
it are called probabilistic.

An example of a probabilistic criterion of efficiency is evaluating the quality
of a conformal predictor by the average p-value computed for a test object x
with postulated label y, with x ranging over the test sequence and y ranging
over all possible labels. This criterion does not depend on the true labels of
the test objects, and so agrees with the notion of sharpness in Gneiting et al.’s
version of the efficiency principle. The rationale behind it is that we would like
the p-values for labels different from the true one to be as small as possible (the
p-value for the true label is not under our control; because of the validity, it is
distributed uniformly on [0, 1]).

The disadvantage of this criterion of efficiency is that the average contains a
lot of noise created by the true label. Another criterion of efficiency (“observed
fuzziness”) is defined in the same way except that (x, y) ranges over all pairs
where x is a test object and y is a label different from x’s true label. A disad-
vantage is that this criterion does depend on the true labels of the test objects,
but the average now involves less noise; in the ideal case it will be close to zero.

The original goal of conformal prediction was to complement the predic-
tions output by state-of-the-art algorithms of mainstream machine learning by
provably valid measures of their accuracy and reliability [46]. Recently, first
steps have been made in designing conformal predictors ab initio [7]; we can
train conformal predictors directly by minimizing the observed fuzziness on a
calibration sequence (or in the framework of cross-validation).

5.3 Conformal martingales and online hypothesis testing

An interesting application of the validity of conformal predictors, including the
independence of p-values in the online protocol, is to testing the hypothesis of
randomness online [43]. Suppose an IID sequence of observations at some point
ceases to be IID. How can we detect the change and, for example, raise an alarm
as soon as possible after the change occurs? (A special case is where the hy-
pothesis of randomness never holds, which corresponds to testing randomness.)

Existing methods can deal with the case where the pre-change distribution is
known. In combination with conformal prediction, we can apply these methods
to the uniformly distributed and independent p-values. This gives us proce-
dures for change detection in the nonparametric situation where the pre-change
distribution is only known to belong to the IID model.

5.4 Repetitive structures

Conformal prediction, as discussed so far, produces predictions that are valid
under the IID model. However, it can be generalized in a straightforward man-
ner to arbitrary repetitive structures, as introduced by Per Martin-Löf [32] and
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further developed by Lauritzen [29].
The IID model is an important repetitive structure, but another example

is provided by the Gaussian IID model [46, Section 8.5]. Interestingly, Fisher’s
fiducial distribution (3) coincides with the conformal predictive distribution
for the Gaussian IID model and trivial conformity measure (the identity func-
tion). This implies, in particular, that Fisher’s fiducial distribution (3) satisfies
a stronger property of validity than probabilistic calibration; we can also say
that the random variables Q(ypast, yn) are independent under the Gaussian IID
model (as defined at the beginning of Subsection 2.1) in the online prediction
protocol. Therefore, the prediction intervals (2) fail to cover the true future
observations with probability ε independently.

Yet another example of repetitive structure is provided by graphical models
[13]. The testing methods described in Subsection 5.3 are applicable to any
repetitive structure, including graphical models.

6 Conclusion

The key message of this chapter is that there are ways to extend ideas of fidu-
cial prediction to nonparametric settings, including those useful in regression
problems. The notion of validity known as probabilistic calibration is attained
automatically, but there are other notions of validity that deserve to be explored
in modern approaches to fiducial prediction. Efficiency is never automatic and
is an extensive and largely unexplored area of research. This includes developing
suitable criteria of efficiency for predictive systems, fiducial and conformal.
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