
True and false discoveries with

independent and sequential e-values

Vladimir Vovk Ruodu Wang

Users of these tests speak of the
5 per cent. point [p-value of 5%]

in much the same way as I should
speak of the K = 10−1/2 point
[e-value of 101/2], and of the 1
per cent. point [p-value of 1%]

as I should speak of the
K = 10−1 point [e-value of 10].

Project “Hypothesis testing with e-values”

Working Paper #4

First posted March 1, 2020. Last revised August 13, 2024.

Project web site:
http://alrw.net/e



Abstract

In this paper we use e-values in the context of multiple hypothesis testing as-
suming that the base tests produce independent, or sequential, e-values. Our
simulation and empirical studies and theoretical considerations suggest that, un-
der this assumption, our new algorithms are superior to the known algorithms
using independent p-values and to our recent algorithms designed for e-values
without the assumption of independence.
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1 Introduction

The notion of a p-value has been widely criticized recently as the basis of sta-
tistical hypothesis testing (see, e.g., [23]). Bayes factors provide an alternative
approach (see, e.g., [1, Sect. 2]). In this paper we continue the study of e-values,
a promising new tool for testing, in addition to p-values and Bayes factors. For
recent work on hypothesis testing with e-values, as well as their connections and
differences to methods based on p-values, see, e.g., [19, 15, 22, 12].

Two important mathematical advantages of e-values over p-values are that
the arithmetic average of several e-values is always an e-value and that the
product of several independent e-values is an e-value. The second property gen-
eralizes to the case of sequential e-values, which is a far-reaching generalisation
of independent e-values to be discussed later in the paper. Both properties are
useful in multiple hypothesis testing.

Our previous papers [19, 20] applying e-values to multiple hypothesis test-
ing did not make any assumptions about the base e-values and relied on the
arithmetic average of e-values being an e-value. Using arithmetic averaging is
very natural in this case since the arithmetic mean essentially dominates any
symmetric function for merging e-values [19, Proposition 3.1].

In this paper we assume that the base e-values are independent or at least
sequential. This gives us extra freedom in combining e-values, which we use for
constructing confidence bounds for the number of true discoveries in multiple
hypothesis testing. These confidence bounds are summarised in the form of
“discovery matrices”, which were introduced in [20] in the case of arbitrary de-
pendence between the base e-values. In this paper we design similar procedures
for sequential e-values and demonstrate the power of our procedures in simula-
tion and empirical studies. The assumption that the base e-values are sequential
(or independent) is, of course, a downside of the procedures developed in this
paper; however, under those assumptions, the gain in power is very significant.

We start the main part of the paper in Sect. 2 from basic definitions related
to e-values and confidence bounds. Multiple hypothesis testing is usually under-
stood as testing multiple hypotheses, and this is our main object of interest in
this paper. However, Sect. 3 deals with repeated testing of a single hypothesis
and introduces functions for merging e-values, which is a first step towards test-
ing multiple hypotheses. In Sect. 4 we introduce discovery matrices. Section 5
is devoted to a simulation study, and Sect. 6 to an empirical study of discov-
ery matrices. In Sect. 7 we develop a computationally more efficient version
of our main procedure for computing discovery matrices. Statistical properties
of this procedure are briefly discussed in Sect. 8; this is just a first attempt of
theoretical analysis. Section 9 concludes and lists some directions of further
research.
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2 E-values for hypotheses testing and confi-
dence estimation

To make our exposition self-contained, we start from basic definitions. For
further information on e-values, see our previous papers [19, 20].

In this paper we fix an underlying probability space (Ω,A,P) (which we
rarely mention explicitly). We will use the notation E(f) for the expectation∫
f dP of an extended random variable f : Ω → [−∞,∞] w.r. to the true

data-generating distribution P. More generally, we will write EQ(f) for the ex-
pectation

∫
f dQ of f w.r. to an arbitrary probability measure Q on (Ω,A). The

expectation EQ(f) always exists (but may be equal to∞) when f is nonnegative,
that is f : Ω → [0,∞].

An e-variable w.r. to a probability measure Q on (Ω,A) is a nonnegative
extended random variable E : Ω → [0,∞] such that EQ(E) ≤ 1. A large
value of E(ω) for the realized outcome ω is interpreted as casting doubt on Q
being the true data-generating distribution P. Indeed, by Markov’s inequality,
Q(E ≥ c) ≤ 1/c for any c > 1, and so E can take large values only with a
small Q-probability. This interpretation assumes, of course, that E was chosen
in advance of the statistical experiment. An e-value is the value E(ω) taken by
the e-variable.

A more standard way of testing statistical hypotheses is to use p-values, de-
fined to be the values taken by p-variables, i.e., nonnegative random variables
P such that, for any α ∈ (0, 1), Q(P ≤ α) ≤ α. There are numerous ways
of converting p-values to e-values and a natural way of converting e-values to
p-values (see, e.g., [19, Sect. 2]), but in order to compare the strength of evi-
dence against the null hypothesis provided by e-values and p-values we will use
Jeffreys’s rules of thumb that we will describe in Sect. 5.

Alongside the true data-generating probability measure P on the underlying
measurable space (Ω,A) we will consider other probability measures and will
use the notation Q for the set of all probability measures on (Ω,A). An e-
test is a family of e-variables (EQ | Q ∈ Q), EQ being an e-variable w.r. to Q.
Assuming the e-test E had been chosen before the experiment, the interpretation
of EQ(ω) is that it measures lack of agreement between an outcome ω and a
putative explanation Q. Namely, suppose EQ(ω) is large; then the disagreement
between Q and ω has two sides:

� if ω happens, we do not regard Q to be feasible as a data-generating
distribution;

� if we believe that Q is the data-generating distribution (Q = P), we do
not expect ω to happen.

If EQ(ω) ≥ α, we will say that ω is α-strange under Q. Otherwise, ω and Q
agree at level α.
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2.1 Confidence regions

We are often interested not in the data-generating distribution P itself but in
the value g(P) of a function g on it; for example g can map the probability
measures on the real line R to their medians. In confidence estimation, g(P) is
usually interpreted as the value of a parameter corresponding to P; we will refer
to g as a parameter function. For a given e-test E, parameter function g : Q →
Θ, significance level α > 0, and realized outcome ω ∈ Ω, the corresponding
confidence region is defined as

Γg
α(ω) := {g(Q) | EQ(ω) < α}. (1)

A typical value of α used in this paper is 10; in this case Γg
α ⊆ Θ (Θ being the

chosen parameter space) is the set of all parameter values that agree with the
realized outcome at level 10.

Notice that the confidence regions (1) are valid simultaneously for all func-
tions g : Q → Θ (let us assume that the parameter space Θ is fixed, although
our statement of simultaneous validity is also true for variable Θ), provided we
are using the same e-test for all g. Namely, g(Q) ∈ Γg

α(ω) for all g unless ω is
α-strange under Q.

2.2 Necessity and possibility measures

These are different ways of packaging the same information as that available in
confidence regions (1). Given an e-test E, we define the necessity measure

□g(B | ω) := inf
Q:g(Q)/∈B

EQ(ω)

and the possibility measure

♢g(B | ω) := inf
Q:g(Q)∈B

EQ(ω) = □g(Bc | ω), (2)

where B ⊆ Θ is a set of parameter values and Bc := Θ \B is its complement.
The intuition behind □g(B | ω) is given in terms of a Fisher-type disjunction:

g(P) ∈ B unless ω is□g(B | ω)-strange under P (cf. [7, Sect. III.1]). For example,
we expect g(P) ∈ B if □g(B | ω) is large. This also gives an interpretation of
♢g(B | ω) in view of the duality

♢g(B | ω) = □g(Bc | ω).

Namely, g(P) ∈ B is impossible unless ω is ♢g(B | ω)-strange. (So we could
also call (2) an impossibility measure.) For example, we expect g(P) /∈ B if
♢g(B | ω) is large.

3 Multiple testing of a single null hypothesis

A measurable function F : [0,∞)K → [0,∞) for an integer K ≥ 1 is an ie-
merging function if, for any probability space and any independent e-variables
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E1, . . . , EK on it, the extended random variable F (E1, . . . , EK) is an e-variable
(when it exists, i.e., when E1, . . . , EK take finite values).

An important relaxation of independence of e-variables E1, . . . , EK is the
requirement that they be sequential : for each k ∈ {1, . . . ,K},

E(Ek | E1, . . . , Ek−1) ≤ 1.

Sequential e-variables typically describe a sequential process of testing the null
hypothesis P: Ek should be a valid e-variable even when E1, . . . , Ek−1 are
known. A measurable function F : [0,∞)K → [0,∞) is an se-merging func-
tion if, for any probability space and any sequential e-variables E1, . . . , EK on
it, F (E1, . . . , EK) is an e-variable. Of course, all se-merging functions are ie-
merging functions, but the converse is not true [21, Example 2].

We extend these merging functions to be of the form F : [0,∞]K → [0,∞] in
a canonical way (described in [19], Proposition C.1 in the Online Supplement):
if any of the arguments of F is ∞, set F to ∞.

Important examples of se-merging functions [19] are

Un(e1, . . . , eK) :=
1(
K
n

) ∑
{k1,...,kn}⊆{1,...,K}

ek1
. . . ekn

, n ∈ {1, . . . ,K}. (3)

We will refer to them as the U-statistics (they are the standard U-statistics
with product as kernel). The statistics U1 play a special role since they belong
to the narrower class of e-merging functions, meaning that U1(E1, . . . , Ek) is
an e-variable whenever E1, . . . , EK are e-variables (not necessarily sequential).
Multiple hypothesis testing using U1 was explored in [19, 20], and in this paper
we will often be interested in U2.

An assumption that we will need to make about merging functions in this pa-
per is that they are increasing in each argument and are symmetric (more fully,
permutation-symmetric, i.e., not depending on the order of their arguments). In
particular, Algorithm 1 below will assume that its underlying merging function
F is increasing and symmetric. While this assumption appears to be very natu-
ral for ie-merging functions, it becomes more restrictive for se-merging functions:
see Example 1 in [21].

4 Discovery matrices for independent and se-
quential e-values

In this section we consider the problem of testing K statistical hypotheses Hk,
k = 1, . . . ,K, for some K ∈ {2, 3, . . . }. Each hypothesis Hk may be simple,
Hk ∈ Q, or composite, Hk ⊆ Q. We assume, without loss of generality, that Hk

is composite (a simple hypotheses Q ∈ Q can be interpreted as the composite
hypothesis {Q}).

For each k we are testing the null hypothesis Hk using an e-variable Ek.
Namely, we are given a sequence E1, . . . , EK of extended random variables such
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that each Ek, k = 1, . . . ,K, is an e-variable for testing Hk in the sense of
satisfying EQ(Ek) ≤ 1 for all Q ∈ Hk. Therefore, Ek is an e-variable w.r. to any
Q ∈ Hk, but it does not have to be an e-variable w.r. to the true data-generating
measure P.

4.1 Discovery vectors

We are interested in the set of k ∈ {1, . . . ,K} for which P ∈ Hk, i.e., Hk is a true
hypothesis (which also determines the set of indices for which the hypothesis
is false). Our first goal is to define, for each set R ⊆ {1, . . . ,K}, a confidence
region for the number of k ∈ R for which Hk is false. Our confidence region
will always be of the form {L, . . . ,K} for some lower bound L (we only have a
lower confidence bound since E(Ek) ≤ 1 may be true even if Hk is not a true
hypothesis).

Suppose that H1, . . . ,HK are scientific hypotheses that an experimental sci-
entist is interested in. After observing the e-values e1, . . . , eK , where ek is the
realized value of the e-variable Ek, the scientist comes up with a rejection set
R ⊆ {1, . . . ,K} containing the indices of the hypotheses that she decides to re-
ject based on e1, . . . , eK . The elements of R are referred to as discoveries (i.e.,
they are discoveries as claimed by the scientist). A discovery k ∈ R is a true
discovery if P /∈ Hk, and it is a false discovery if P ∈ Hk. The motivation for
this terminology is that Hk is regarded to be the default hypothesis saying that
an interesting effect does not exist [14]; rejecting the null hypothesis is then a
discovery.

A natural way to choose the rejection set R is to include in it a number of
k with the largest ek, but the scientist sometimes might want to include all k
connected by some common theme [11, Sect. 4.1]. We will start from discussing
arbitrary R and then will move on to the R corresponding to the largest e-values.

For each Q ∈ Q, let

IQ := {k ∈ {1, . . . ,K} | Q ∈ Hk}

be the indices of the true hypotheses under Q. Given a rejection set R, we are
interested in the parameter

gR(Q) := |R \ IQ| ,

which is the number of true discoveries in R under Q. While in this paper we
concentrate on the parameter function gR, this function can be generalized in
various directions; see, e.g., [20, Remark 6.1].

We are interested in lower confidence bounds on the number of true discov-
eries. For that, in order to apply the recipe (1), we need an e-test. A natural
way to obtain an e-test is to apply a sequence of symmetric e-merging functions
FK′ : [0,∞)K

′ → [0,∞), K ′ ∈ {2, . . . ,K}, at each Q ∈ Q:

EQ := F|IQ|((Ek)k∈IQ) = F ((Ek)k∈IQ), (4)

5



where (Ek)k∈IQ stands for the sequence of length IQ whose elements are Ek

with k ∈ IQ in the ascending order of k (although the order of the elements of
this sequence does not matter since FK′ are assumed symmetric). We define
F0 and F1 in (4) (needed when |IQ| ∈ {0, 1}) separately; namely, F0 := 1 and
F1(e) := e. The second “=” in (4) introduces our convention of omitting the
lower index K ′ in the notation FK′ ; indeed, the lower index is redundant as it
can be recovered from the number of arguments of FK′ = FK′(e1, . . . , eK′).

In order to obtain tighter confidence regions, we assume that, for any prob-
ability measure Q ∈ Q, the random e-variables Ek, k ∈ IQ, are independent
under Q. It is clear that in this case (4) is an e-test provided F is a symmetric
ie-merging function. This will be the main case considered in this paper.

We gave examples of useful ie-merging functions in Sect. 3. However, for the
use in (4) we need to generalize (3) to the case n > K ≥ 1 (remember that we
have K ′ := |IQ| in place of K when using (3) in the context of (4), and so K ′

can be a small number even for a large number of the null hypotheses). Let us
set

Un(e1, . . . , eK) := UK(e1, . . . , eK) = e1 . . . eK , n > K. (5)

This convention is not needed in the case n = 2, which is our main object of
study, since it was already made implicitly when defining F1.

For each j ∈ {0, . . . ,K − 1}, we are interested in the possibility measure

♢gR({0, . . . , j} | ω),

where ω ∈ Ω is the realized outcome, which we usually omit, as is customary in
probability theory. The interpretation of ♢gR({0, . . . , j}) is that the number of
true discoveries exceeds j unless the realized outcome is ♢gR({0, . . . , j})-strange.

A more explicit representation of ♢gR({0, . . . , j}) is:

♢gR({0, . . . , j}) = inf
Q∈Q:|R\IQ|≤j

EQ = min
Q∈Q:|R\IQ|≤j

F ((Ek)k∈IQ)

≥ min
I⊆{1,...,K}:|R\I|≤j

F ((Ei)i∈I) =: DR
F (j).

(6)

The inequality in (6) may be strict (when some subsets of {1, . . . ,K} cannot be
represented in the form IQ for any Q ∈ Q), but in interesting cases we have an
equality there. The symbol “=:” means that DR

F (j) is being defined.
The vector (DR

F (j))
K−1
j=0 is the discovery vector for R (in [19] we referred to it

as regularized discovery e-vector). We will now introduce “discovery matrices”,
whose rows are discovery vectors.

4.2 Discovery matrices

In this subsection we impose restrictions on the ie-merging function F in (6)
which will allow us to restrict our attention to a relatively small number of
rejection sets. Namely, as mentioned at the end of Sect. 3, we assume that F
is increasing in each of its arguments and symmetric. Suppose the e-values are
listed in the decreasing order, e1 ≥ · · · ≥ eK . Then the rejection sets

Rr := {1, . . . , r}, r ∈ {1, . . . ,K},

6



Algorithm 1 Discovery matrix (lower triangular)

Input: ie-merging (or se-merging) functions Fk, k ∈ {1, . . . ,K}.
Input: a decreasing sequence of e-values e1 ≥ · · · ≥ eK .
1: for r = 1, . . . ,K
2: for j = 0, . . . , r − 1
3: Sr,j := {j + 1, . . . , r}
4: DMF

r,j := F ((ei)i∈Sr,j
)

5: for k = r + 1, . . . ,K
6: e := F ((ei)i∈Sr,j∪{k,...,K})

7: if e < DMF
r,j

8: DMF
r,j := e

form a complete family of rejection sets: for any r and any rejection set R of
size r we have, for all j ∈ {0, . . . , r − 1}, DRr

F (j) ≥ DR
F (j).

The discovery matrix is a lower triangular matrix with the entries

DMr,j = DMF
r,j := DRr

F (j), r = 1, . . . ,K, j = 0, . . . , r − 1;

we often drop the upper index F in DMF
r,j when it is clear from the context.

Algorithm 1 is one way of constructing a discovery matrix, under an additional
assumption (cf. (8) below), based on a family of ie-merging functions Fk, k ∈
{2, . . . ,K}. The algorithm implements the equality between the extreme terms
of

DMF
r,j = min

I⊆{1,...,K}:|Rr\I|≤j
F ((Ei)i∈I) = min

I⊆{1,...,K}:|Rr\I|=j
F ((Ei)i∈I). (7)

The first equality in (7) follows from the last equality (“=:”) in (6), and the
second equality in (7) follows from the following natural condition of consistency
between different merging functions in the family (Fk): if e ∈ [0,∞)k for k ∈
{1, . . . ,K − 1} and e ∈ [0,∞), then

e ≥ max(e) =⇒ F (e, e) ≥ F (e). (8)

This is the condition under which Algorithm 1 is valid.

Remark 4.1. Algorithm 1 is a version of Algorithm 2 in [20]. In both algo-
rithms the e-values are assumed to be ordered (without loss of generality, since
we assume F to be symmetric), but while in Algorithm 2 in [20] the order is
ascending, in Algorithm 1 it is descending. Another difference is that in this
paper (as in the arXiv version of [20]) we use the version of the discovery ma-
trix described in [20, Remark 6.3]. Finally, in [20] we were mainly interested
in the arithmetic-mean merging function (because it essentially dominates all
symmetric e-merging functions with no dependence assumption), while in this
paper we are interested in a wider range of merging functions by considering
independent or sequential e-variables.
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The validity of Algorithm 1 follows from the fact that the min in

min
I⊆{1,...,K}:|Rr\I|=j

F ((Ei)i∈I)

(cf. (7)) is attained at I of the form

Sr,j ∪ {k, . . . ,K} = {j + 1, . . . , r} ∪ {k, . . . ,K}.

This follows immediately from the ie-merging function F being increasing in all
arguments and symmetric.

Discovery matrices satisfy useful properties of monotonicity given in the
following proposition (which is proved as part of the proof of Proposition 6.3 in
the arXiv version of [20]). The following proposition assumes the standard way
of presenting matrices (as in Figures 1–5 below).

Proposition 4.2. Suppose the family (Fk) of ie-merging functions satisfies (8).
Then DMr,j is

� decreasing along the rows: DMr,j′ ≤ DMr,j when j′ > j;

� increasing down the columns: DMr′,j ≥ DMr,j when r′ > r;

� decreasing in the Southeast direction: DMr+i,j+i ≤ DMr,j when i > 0.

(Even if (8) is violated, these properties are satisfied for the regularized ver-
sion (9) defined below.)

Condition (8), despite looking very natural, is not satisfied, strictly speaking,
even for the U2 ie-merging function. For example, taking e = (e1) of length 1,
we have

U2(e1, e) = e1e < e1 = U2(e1) = U1(e1)

(remember our convention (5)) for some e1 and e such that e > e1: it suffices to
take e < 1. In this case, however, both e1 and e1e are useless as e-values, and
in practice we can regard (8) as satisfied for U2 (it is natural to ignore entries
below 1 in discovery matrices, or to replace them by 1).

If (8) is violated, we should regularize the output of Algorithm 1 by redefin-
ing

DMF
r,j := min

(
DMF

r,0, . . . ,DMF
r,j

)
. (9)

Then the equality between the extreme terms of (7) will always hold, and so
DMr,j will be a lower bound on ♢gR({0, . . . , j}).

The computation time of Algorithm 1 depends on the computation time of
the family of ie-merging function Fk, k = 1, . . . ,K. In the cases of primary
interest to us, namely Un for a fixed n, the computation time for each of Fk is
O(K) (and even O(k)). For U1 this is obvious, and for U2 it suffices to represent
it in the form

U2(e1, . . . , ek) =
1

K(K − 1)

(
(e1 + · · ·+ ek)

2 − (e21 + · · ·+ e2k)
)
.
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For a general fixed n, use induction in n.
Assuming that Fk, k = 1, . . . ,K, are computed in linear time, O(K), each

row of the discovery matrix can be computed by Algorithm 1 in time O(K3):
computing each e-value (line 8) takes time O(K), each inner loop (line 5) takes
time O(K2), and so each middle loop (line 2) takes time O(K3). Therefore,
computing the whole discovery matrix takes time O(K4). Applying regulariza-
tion (9) on top of these calculations, if needed, only takes time O(K), and so
does not change the overall time (O(K3) in the case of a row of the discovery
matrix or O(K4) in the case of the whole discovery matrix).

4.3 Beyond independent e-values

So far we have discussed the case of independent e-variables Ek (more pre-
cisely, we have assumed the Q-independence of (Ek | Q ∈ Hk) under any
Q ∈ Q). Replacing ie-merging functions by se-merging functions, we can
assume, instead, that E1, . . . , EK are sequential, in the sense of satisfying
EQ(Ek | E1, . . . , Ek−1) ≤ 1 whenever Q ∈ Hk. To check that (4) is indeed
an e-test, apply the tower property of conditional expectations: the latter im-
plies that (Ek)k∈IQ are sequential e-variables under Q whenever E1, . . . , EK

are.
In Sections 5 and 6 we will apply Algorithm 1 to K independent e-values. A

typical scenario in which independent e-values arise in K statistical experiments
is where there are reasons to believe that there is no or little interference or sam-
ple sharing between different experiments. The experiments can be conducted
at the same time or at different times.

Remark 4.3. It is interesting that, in the case of U2 considered in the follow-
ing two sections, the assumption of independence between E1, . . . , EK can be
relaxed in a way different from this paper’s assumption that E1, . . . , EK are
sequential. Instead, we can assume that the covariances cov(Ei, Ej), i ̸= j, are
all nonpositive. Indeed, in this case

E(EiEj) = E((EEi + (Ei − EEi))(EEj + (Ej − EEj))

= (EEi)(EEj) + cov(Ei, Ej) ≤ 1.

Chi et al. [3, Sect. 2] describe interesting practical situations where this assump-
tion is realistic. This includes sampling without replacement. Suppose there is
a very large fixed population, and K scientists each take a different sample from
the population without replacement. Then any increasing statistics (e.g., sample
means) of these K subsamples are negatively associated, and their correlation
is nonpositive.

A possible scenario in which sequential (but not independent) e-variables
E1, . . . , EK arise is where the experiments are performed sequentially, the ex-
periment Ek for k ∈ {2, . . . ,K} is started after the experiment Ek−1 is finished,
and the experiment Ek is designed using the results of the previous experiments
E1, . . . , Ek−1. It is essential that Ek should be an e-variable conditionally on
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Figure 1: Left panel: the discovery matrix for the U1 statistic (i.e., arithmetic
mean) for 100 false and 100 true null hypotheses. Right panel: the U2 analogue.

the previous experiments. The computational experiments reported in this pa-
per do not cover this case, but it is important for us mathematically as all our
methods are applicable to sequential e-variables.

5 A simulation study with independent e-values

In this section we run Algorithm 1 applied to U2 and, for comparison, U1. As
discussed in the previous section, the Un discovery matrix can be computed in
time O(K4). For n = 1, the time can be improved from O(K4) to O(K2) [20,
Sect. 9]. For n = 2, we can improve the time O(K4) to O(K3), as we show
in Sect. 7 (Algorithm 2), and this is sufficient to cope not only with the case
K = 200 that we use in our simulation studies in this section but also with K
of a few thousand (as used in our empirical studies in the next section, where
we compute only part of the discovery matrix).

We generate the base e-values as in [20, Sect. 7]: the null hypotheses are
N (0, 1), K = 200, the first 100 observations x are generated from N (−3, 1),
the last 100 from N (0, 1), all independently, and the base e-variables are the
likelihood ratios

E(x) :=
exp(−(x+ 3)2/2)

exp(−x2/2)
= exp(−3x− 9/2). (10)

The results are shown in Figure 1 (whose left panel is identical to the upper
left panel of Figure 4 in [20]); they are much better for U2. Our chosen colour
scheme, to be described momentarily, entails that “better” means “darker” here.

Each panel shows the lower triangular matrix DMF
r,j , the left for F = U1

and the right for F = U2. The colour scheme used in this figure is inspired by
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Jeffreys’s [13, Appendix B] (as in [20]):

� The entries with DMF
r,j below 1 are shown in dark green; there is no evi-

dence that there are more than j true discoveries among the r hypotheses
with the largest e-values.

� The entries DMF
r,j ∈ (1,

√
10) ≈ (1, 3.16) are shown in light green. For

them the evidence is poor.

� The entries DMr,j ∈ (
√
10, 10) ≈ (3.16, 10) are shown in yellow. The

evidence is substantial.

� The entries DMF
r,j ∈ (10, 103/2) ≈ (10, 31.6) are shown in light red. The

evidence is strong.

� The entries DMF
r,j ∈ (103/2, 100) ≈ (31.6, 100) are shown in dark red. The

evidence is very strong.

� Finally, the entries DMF
r,j > 100 are shown in black, and for them the

evidence is decisive.

The interpretation of the two discovery matrices in Figure 1 in terms of con-
fidence regions is particularly convenient: for each row r of a discovery matrix,

� the red (both dark and light), yellow, and green (both dark and light)
entries in row r coincide with the confidence region at significance level
100 for the number of true discoveries among the r largest e-values,

� the light red, yellow, and green entries in row r coincide with the confidence
region at significance level 103/2 for the number of true discoveries among
the r largest e-values,

� the yellow and green entries in row r coincide with the confidence region
at significance level 10 for the number of true discoveries among the r
largest e-values,

� the green entries in row r coincide with the confidence region at signif-
icance level

√
10 for the number of true discoveries among the r largest

e-values (this is the final interesting case).

A darker discovery matrix (such as the right-hand panel of Figure 1 as compared
with its left-hand panel) is preferable since it means tighter confidence regions.

Comparison with methods based on p-values

It is interesting to compare the right panel of Figure 1 to a similar figure for
p-values obtained by standard methods. A rigorous way of doing it would be
to convert, or as we usually say, calibrate, e-values to p-values and vice versa.
As we mentioned in Sect. 2, there are numerous ways of calibrating p-values
to e-values. However, the only admissible way of calibrating an e-value e to

11
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Figure 2: Left panel: the discovery p-matrix for the GWGS procedure with
independent p-values. Right panel: the U2 discovery matrix e-to-p calibrated
via p := min(1/e, 1).

a p-value p is p := min(1/e, 1). Its validity follows from Markov’s inequality
(E(1/E ≤ α) ≤ α for any e-variable E), and its domination of any other e-to-p
calibrator is stated in [19, Proposition 2.2]. Comparing e-values and p-values is
discussed in detail in [20, Sect. 3], where we demonstrate very low “round-trip
efficiency” of converting e-values to p-values and back: namely, we start from a
highly statistically significant p-value of 0.5%, transform it to an e-value using
a popular method [1, (1)], and then transform it back to a p-value by inverting
the e-value; the resulting p-value (7.2%) is not even statistically significant.
Therefore, in [19] we emphasize informal comparisons.

The left panel of Figure 2 shows the p-values produced by the GWGS proce-
dure, which is designed specifically for p-values. The procedure is very standard
[8, 11, 10], but the abbreviation, after the four authors of this procedure, that
we use for it was introduced in our previous paper [20]. As presented in that
paper, the procedure produces a discovery matrix based on p-values, or as we
will say, discovery p-matrix ; namely, the discovery p-matrix in Figure 2 has the
entries

DMSimes
r,j := max

I⊆{1,...,K}:|Rr\I|≤j
F ((Pi)i∈I), r = 1, . . . ,K, j = 0, . . . , r − 1

(11)
(cf. (7)), where F is Simes’s [16] function for merging independent p-values.
The underlying p-value Pk for testing the null hypothesis Hk for each of the 200
observations is the optimal one coming from the Neyman–Pearson lemma (and
so it is based on (10) as test statistic).

Figure 2 uses what we called Fisher’s scale in [20], but now we extend it by
two further thresholds, one of which is 0.5%, as advocated by Benjamin et al.

12



[2]. Therefore, our colour scheme is:

� The p-values above 5% are shown in green; they are not statistically sig-
nificant.

� The p-values between 1% and 5% are shown in yellow; they are statistically
significant but not highly significant.

� The p-values between 0.5% and 1% are shown in red; they are highly
significant (but fail to attain the more stringent criterion of significance
advocated in [2]).

� The p-values between 0.1% and 0.5% are shown in dark red.

� The p-values below 0.1% are shown in black; they can be regarded as
providing decisive evidence against the null hypothesis (to use Jeffreys’s
expression in a slightly different context).

Jeffreys [13, Appendix B] gives a crude but convenient rule of thumb for
comparing Bayes factors and p-values. E-values are closely related to Bayes fac-
tors, and in fact e-values are Bayes factors (and vice versa) in the case of simple
null hypotheses; see, e.g., [12, Sect. 1.1.3] for a detailed discussion. According
to Jeffreys’s rule of thumb as applied to e-values and p-values, a p-value of 5%
corresponds to an e-value of 101/2 ≈ 3.16, and a p-value of 1% corresponds to
an e-value of 10. This and similar informal correspondences suggested by other
authors (such as I. J. Good) are described in detail in [20, Sect. 3]. Therefore,
according to this interpretation of Jeffreys’s rule, the discovery matrices and
discovery p-matrices using our colour schemes are somewhat comparable; e.g.,
the light red cells correspond to similar amounts of evidence against the null
hypothesis.

Comparing the left panel of Figure 2 to the right panel of Figure 1, we can
see that the results produced using e-values are typically much better leading
to tighter confidence regions. Remarkably, even after the crude e-to-p calibra-
tion e 7→ 1/e our method produces p-values that look better than the p-values
produced by the GWGS procedure: see the right panel of Figure 2.

A simple informal explanation of the superior performance of our method is
that when combining independent e-values evidence may multiply. For instance,
the product of two “non-substantial” independent e-values (e.g., around 3) leads
to a “substantial” e-value (e.g., around 9). In the GWGS procedure, the stan-
dard method of combining independent p-values is that of Simes, which will not
produce anything smaller than the smallest input p-value. In contrast, our U2

function (as well as Un for n ≥ 3) is able to produce larger output e-values than
the largest individual input. This observation suggests that other versions of
the GWGS procedure, for instance combining a U-statistic with Fisher’s method
[6], might be more powerful than the standard method in certain applications.
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6 An empirical study with independent e-values

In this section we will use the prostate dataset first described by Singh et al.
[17]; it is also analyzed in [4, Chap. 2] and then in [5, Chap. 15]. This dataset
represents a 6033×102 matrix whose rows correspond to 6033 genes and columns
correspond to 102 men. The first 50 men are healthy controls and the remaining
52 are patients with prostate cancer. Each entry xk,j of the matrix represents
the activity of the kth gene in the jth man.

For each gene we are interested in whether its activity is different in the
patients and the healthy controls. So we have 6033 null hypotheses of no differ-
ence to test. Efron [4, Chap. 2] makes the assumption of independence of his
test statistics for testing those null hypotheses (but he also analyses shortfalls of
this assumption in [4, Sect. 2.5]), along with several other substantial assump-
tions, such as the Gaussian distribution of the genes’ activities. In this paper,
however, we will avoid making any other assumptions apart from independence.

Following [20, Sect. 8] (which, however, considered a different dataset), we
compute the base e-values as

ek :=
Tk

1
B+1

(∑B
b=1 T

(b)
k + Tk

) , k ∈ {1, . . . , 6033}, (12)

where Tk is the nonconformity score computed as described in the next para-

graph from the kth row of the data matrix, T
(b)
k is the nonconformity score

computed from the same row with randomly permuted labels (independently
for different b), and B is the number of permutations.

We define the nonconformity score as Tk := |tk|d, where d > 0 is a parameter
of the algorithm,

tk :=
x̄k,1 − x̄k,0

sk
is the two-sample t-statistic for the kth gene, x̄k,1 is the average entry in the
kth row for the patients, x̄k,0 is the average entry in the kth row for the healthy
controls,

s2k :=
∑
j

(
xk,j − x̄k,yj

)2
is the sample variance of row k (ignoring a constant factor, which cancels out
when computing (12)), and yj is the label (1 for the patients and 0 for the
healthy controls).

The left panel of Figure 3 gives the top-left 200×200 corner of the discovery
matrix for d := 10 and B := 10000. The result is much better than for the U1

discovery matrix: see the left panel of Figure 4. The price to pay for U2 giving
tighter confidence regions than U1 is, of course, the reliance of the former on
the independence assumption for the base e-variables.

In the right panels of Figures 3 and 4 we give analogous plots but with the
proper e-values (12) replaced by their commonly used simplified versions

ek :=
Tk

1
B

∑B
b=1 T

(b)
k

, k ∈ {1, . . . , 6033}. (13)
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Figure 3: Left panel: the top-left 200×200 corner of the U2 discovery matrix for
the prostate dataset for B := 10000, using Jeffreys’s thresholds. Right panel:
its simplified version (based on (13)) that is only approximately valid.
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Figure 4: The analogue of Figure 3 for the U1 discovery matrix.

15



20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Figure 5: The analogue of Figure 3 for the discovery p-matrix using the GWGS
method with independent p-values.

We will call (13) simplified e-values, but in fact they are not bona fide e-values.
The similarity between the definitions (12) and (13) suggests that simplified
e-values are approximately valid, but sometimes their lack of validity is visible.
The closeness of the left and right panels in Figures 3 and 4 suggests that the
number of iterations B = 10000 is sufficiently large.

Comparison with methods based on p-values

Finally, Figure 5 is the analogue of Figures 3 and 4 for the GWGS method (11)
applied to the p-values

pk :=

∣∣∣{b ∈ {1, . . . , B} | T (b)
k ≥ Tk

}∣∣∣+ 1

B + 1
(14)

(cf. [18, (2.20)]) and their simplified versions

pk :=

∣∣∣{b ∈ {1, . . . , B} | T (b)
k ≥ Tk

}∣∣∣
B

(15)

for k ∈ {1, . . . , 6033}. In this case, there is no dependence on d as the p-values
only depend on the ranks of Tk. The valid p-values (14) used in the left panel of
Figure 5 give a very poor result, and the comparison with the right-hand panel
shows that the number of iterations B = 10000 is far too small when using
p-values: the putative p-values (15) in the right-hand panel are very far from
being valid.
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Algorithm 2 One row of the discovery matrix DM = DMU2 in time O(K2)

Input: Decreasing sequence of e-values e1 ≥ · · · ≥ eK .
Input: Row number r ∈ {1, . . . ,K} of the discovery matrix.
1: sK+1 := 0
2: for k = K, . . . , 1
3: sk := sk+1 + ek

4: for j = r − 1, . . . , 0
5: V := V2({j + 1, . . . , r})
6: e := 2V

(r−j)(r−j−1) (unless j = r − 1)

7: for k = K, . . . , r + 1
8: V ′ := V2({j + 1, . . . , r} ∪ {k, . . . ,K})
9: e′ := 2V ′

(r−j+K−k+1)(r−j+K−k)

10: if e′ < e
11: e := e′

12: DMr,j := e

7 Towards efficient algorithms for U2 and other Un

In this appendix we will see that each row of the discovery matrix based on U2

can be computed in time O(K2), and so the computation of the full discovery
matrix takes time O(K3). This is not as good as the O(K2) algorithm for U1

given as Algorithm 4 in [20], and the existence of such an algorithm for U2

remains an open problem.
Algorithm 2 starts (in lines 1–3) from defining an array

sk := ek + · · ·+ sK , k ∈ {1, . . . ,K + 1},

of partial sums, which is not used in the algorithm explicitly, but we will explain
how it enables an efficient update of the variables V and V ′ in lines 5 and 8. In
the algorithm we use the notation

V2(I) :=
∑

i,i′∈I:i<i′

eiei′ , ∅ ⊂ I ⊆ {1, . . . ,K};

this expression is the key component of the U-statistic computed from ei, i ∈ I.
When |I| = 1, we will treat the value of V2(I) as undefined.

The first value of V in line 5, V2({r}), is undefined, and we then set e := er
instead of the formula given in line 6. The next value of V ,

V := V2({r − 1, r} = er−1er,

is computed from scratch in time O(1), and the following values are computed
in time O(1) using the previous value: V = V2({j+1, . . . , r}) is computed from
the previous value as

V = V + ej+1 (ej+2 + · · ·+ er) = V + ej+1 (sj+2 − sr+1) .
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The very first value of V ′ computed in line 8 (for j = r − 1 and k = K) can be
found in time O(1) from scratch,

V ′ = V2({r,K}) = ereK .

After that the first value of V ′ in each execution of the loop starting in line 7
(i.e., V ′ for j < r − 1 and k = K) can be found in time O(1) from the current
value of V using

V ′ := V + eK (sj+1 − sr+1) .

For the following iterations of this loop the value of V ′ can be updated in time
O(1) using

V ′ := V ′ + ek (ej+1 + · · ·+ er + ek+1 + · · ·+ eK)

= V ′ + ek (sj+1 − sr+1 + sk+1) .

Modifications for Un, n > 2

It is easy (but tiresome) to modify Algorithm 2 so that it computes a row of
DMUn for a fixed n > 2 in time O(K2). Let us consider, for simplicity, the case
n = 3.

Both entries of V2 in Algorithm 2 should be changed to V3, where

V3(I) :=
∑

i,i′,i′′∈I:i<i′<i′′

eiei′ei′′ ,

line 6 should be changed to

e :=
6V

(r − j)(r − j − 1)(r − j − 2)

(unless j = r − 1 or j = r − 2), and line 9 should be changed to

e′ :=
6V ′

(r − j +K − k + 1)(r − j +K − k)(r − j +K − k − 1)

(unless j = r − 1 and k = K). Lines 1–3 for computing the array

sk := V1({k, . . . ,K}),

where
V1(I) :=

∑
i∈I

ei,

should be complemented by computing the array

tk := V2({k, . . . ,K}), k = K, . . . , 1.

The array t can be computed in time O(K) starting from tK := 0 and setting,
for k = K − 1, . . . , 1,

tk := tk+1 + eksk+1.
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In line 5, we can compute V in time O(1) given its previous value using the
identity (true unless j is very close to r)

V3({j + 1, . . . , r}) = V3({j + 2, . . . , r}) + ej+1V2({j + 2, . . . , r})

and the identity

V2({j + 2, . . . , r}) = tj+2 − tr+1 − sr+1(sj+2 − sr+1). (16)

Finally, in line 8 we can compute V ′ in time O(1) given its previous value using
the identity (true unless j is very close to r or k is very close to K)

V3({j + 1, . . . , r} ∪ {k, . . . ,K})
= V3({j + 1, . . . , r} ∪ {k + 1, . . . ,K})
+ ekV2({j + 1, . . . , r} ∪ {k + 1, . . . ,K})

= V3({j + 1, . . . , r} ∪ {k + 1, . . . ,K})
+ ek (V2({j + 1, . . . , r}) + tk+1 + (sj+1 − sr+1)sk+1)

and the identity (16) (with j + 1 in place of j + 2). The simple but numerous
special cases (signalled by “unless”) should be considered separately.

8 When can we expect the U2 merging function
to be effective?

This section is an attempt of a theoretical explanation of the efficiency of the
U2 merging function in our simulation and empirical studies. We start from
an alternative representation of U2, which will shed some light on its expected
performance.

Let e := (e1, . . . , eK) ∈ [0,∞)K , M1 = U1(e) be the arithmetic mean of
e1, . . . , eK ,

M2 :=

√
e21 + · · ·+ e2K

K

be the quadratic mean of e1, . . . , eK , and

var(e) :=
1

K

K∑
k=1

(ek −M1)
2 = M2

2 −M2
1

be the sample variance of e1, . . . , eK .

Lemma 8.1. For any e,

U2(e) = M2
1 − 1

K − 1
var(e). (17)
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Proof. By definition,

U2(e) =
1

K(K − 1)/2

∑
i<j

eiej =
1

K(K − 1)

(∑
i

ei

)2

−
∑
i

e2i


=

K

K − 1
M2

1 − 1

K − 1
M2

2 = M2
1 − 1

K − 1
var(e).

Corollary 8.2. For any e,

var(e) ≤ (K − 1)M2
1 .

For some e ̸= 0 the inequality holds as equality.

Proof. The first statement follows from U2(e) ≥ 0, and an example for the
second one is e := (K, 0, . . . , 0).

According to Corollary 8.2,

rvar(e) :=
var(e)

(K − 1)M2
1

,

which we will call the relative (sample) variance of e, is a dimensionless quantity
in the interval [0, 1]. When e = 0, we set rvar(e) := 0. The relative variance is
zero if and only if all ei coincide, and it is 1 if and only if all ei but one are zero.

Using the notion of relative variance, we can rewrite (17) as

U2(e) = M2
1 (1− rvar(e)). (18)

We can see that the method of this paper based on U2 has a potential for
improving on the U1 method of [20], but the best it can achieve is squaring the
entries of the discovery matrix. An entry of a discovery matrix based on U1

is squared when we replace U1 by U2 if the multiset of e-values on which the
min in (7) is attained (for F := U1) consists of a single value. Otherwise the
discovery matrix based on U2 suffers as the e-values become more diverse.

The identity (18) shows that U2 > M1 (i.e., U2 improves on U1 = M1) if and
only if

rvar(e) < 1− 1

M1
.

For example, if the result of applying U1 is borderline strong evidence against
the null hypothesis, U1 = 10, it is improved by U2 if and only if rvar(e) < 0.9.
For comparison:

� in our simulation studies, the relative variance of the whole set of 200
likelihood ratios (10) (those used in Figure 1) is approximately 0.24, and
the relative variance of the 20 largest of them is approximately 0.23;

� in our empirical studies, the relative variance of the whole set of 6033
Monte Carlo e-values (12) (those used in Figures 3 and 4) is approximately
0.035; the relative variance of the 200 largest among those 6033 e-values
is approximately 0.031, while the relative variance of the 20 largest is
approximately 0.028.
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9 Conclusion

This paper has given examples of se-merging functions, namely Un, which can
be successfully applied, in simulation and empirical studies, to multiple hypoth-
esis testing with independent base e-values. An interesting question is whether
admissible ie-merging functions different from Un and their convex combinations
can also be useful for this purpose. Such functions definitely exist; e.g., in [19,
Remark 4.3] we show that

f(e1, e2) :=
1

2

(
e1

1 + e1
+

e2
1 + e2

)
(1 + e1e2) (19)

is an admissible ie-merging function. To check that f(e1, e2) does not have the
form ae1 + be2 + ce1e2, it suffices to set e2 := 0. We can even show that (19) is
not an se-merging function: see [21, Example 2].

In our computational experiments in Sections 5 and 6 we only study the
case of independent base e-values, while in Sect. 4 we study the more general
case of sequential e-values. The reason is that, while our main procedure works
perfectly well in the sequential case from the mathematical point of view, it
appears to be natural from the practical point of view only in the independent
case. In the sequential case, as described in Sect. 4, it is natural to allow testing
the same hypothesis more than once. Another interesting direction of further
research is to design such more general sequential procedures.

In Sect. 7 we described an O(K2) algorithm implementing our procedure for
computing one row of discovery matrices based on Un. It is an open problem
to find O(K) procedures for computing one row of discovery matrices based on
Un with n > 1 (for n = 1 it was done in [19, Proposition 4.1]), or to prove that
such procedures do not exist.
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