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Abstract

Transductive Confidence Machine (TCM) and its computationally efficient
modification, Inductive Confidence Machine (ICM), are ways of complement-
ing machine-learning algorithms with practically useful measures of confi-
dence. We show that when TCM and ICM are used in the on-line mode,
their confidence measures are well-calibrated, in the sense that predictive
regions at confidence level 1 − δ will be wrong with relative frequency at
most δ (approaching δ in the case of randomised TCM and ICM) in the long
run. This is not just an asymptotic phenomenon: actually the error prob-
ability of randomised TCM and ICM is δ at every trial and errors happen
independently at different trials.
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1 Introduction

The bulk of work in computational learning theory is done under the i.i.d.
assumption: the random examples fed to the learning algorithm are indepen-
dent and identically distributed. This is the assumption that we make in this
paper (but no other assumptions are made). The modern theory was started
by Vapnik and Chervonenkis (see [12] for a recent review) and, much later
but independently, by Valiant [11]; nowadays, this theory is often referred
to as the theory of PAC learning. It produced not only deep mathematical
results but also efficient learning algorithms that work very well in practice.

An apparent drawback of the theory is that it only studies algorithms
generating “bare predictions”, i.e., algorithms predicting labels for new ob-
jects without saying how reliable these predictions are. A major concern of
the theory of PAC learning, however, is estimation of the probability of er-
roneous predictions, and, in principle, a low bound on the error probability
would mean high confidence in the prediction. A serious real drawback of the
theory is the weakness of error bounds it produces in practice, even for rela-
tively clean data sets: e.g., for the standard USPS data set of hand-written
digits (described in [12], p. 496) typical PAC bounds on error probability
exceed one [5].

The notion of Transductive Confidence Machine (TCM) was introduced
in [8, 15] to provide a different framework that would allow practically useful
confidence measures. As reported in [7], TCM indeed produces practically
meaningful results on the USPS data set: the “Nearest Neighbour TCM”
(defined in §3 below) is able to predict the vast majority (approximately
95%) of test examples at the confidence level 99%.

The problem of prediction with confidence can be formalised, as done in
this paper, as that of computing “predictive regions” (sets of labels) rather
than bare predictions. (Although this is not the only way to package the
output of prediction with confidence; e.g., in [8, 15] we preferred to present
TCM’s output as a bare prediction plus two measures of its quality, “con-
fidence” and “credibility”.) A prediction algorithm takes as input a “confi-
dence level” 1−δ and for each new object outputs as its prediction a predictive
region rather than a point prediction. There are two natural desiderata for
such algorithms:

• they should be well-calibrated, in the sense that in the long run the
predictions are wrong with relative frequency at most δ;



• they should perform well, in the sense that the number of uncertain
(containing more than one label) predictions should be as small as
possible.

The first desideratum is the priority: without it, the meaning of predictive
regions is lost, and it becomes easy to achieve the best possible performance.
This paper constructs the first non-trivial prediction algorithm (randomised
TCM) which is shown to be well-calibrated without using any assumptions
beyond i.i.d.; moreover, this algorithm is well-calibrated in a very strong
non-asymptotic sense: the probability of error is always δ and errors are
independent of each other.

The qualification “non-trivial” is essential, since it is easy to construct
trivial well-calibrated algorithms (e.g., always output the predictive region
containing all possible labels). The theory of this paper will be exclusively
about the first of the two desiderata listed above, but to convince the reader
that it is natural to care whether TCM is well-calibrated we briefly report
some experimental results.

Figures 1 and 2 show the on-line performance of the Nearest Neighbour
TCM on the USPS data set (the original 9298 hand-written digits, but ran-
domly permuted) for the confidence levels 95% and 99%, respectively. For
every new hand-written digit TCM predicts a set of possible labels (0 to
9) for this digit (the predictive region). The solid line shows the cumula-
tive number of errors, dotted the cumulative number of uncertain predictive
regions, and dashdot the cumulative number of empty predictive regions (in-
evitably leading to an error). In Figure 2, the dashdot line coincides with
the horizontal axis (there are no empty predictions) and so is invisible. (The
four figures in this paper are not significantly affected by statistical variation
due to the random choice of the permutation of the data set.) We can see
that the performance of this particular TCM on this particular data set is
quite good: for most examples the predictive region has at most one label.
For theoretical results about TCM’s performance, see [13] and [14].

Notice that Figures 1 and 2 also provide empirical evidence that TCM is
well-calibrated. It can be seen that the number of errors made grows linearly,
and the slope is approximately 5% for the confidence level 95% and 1% for
the confidence level 99%.

A popular alternative to PAC learning is Bayesian learning. Bayesian
algorithms, however, will not be well-calibrated: we require calibration under
any i.i.d. distribution, whereas Bayesian algorithms are constructed for a
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Figure 1: TCM at 95%

given complete specification of the probability distribution generating the
data. See [3] for a comparison between the TCM and Bayesian approaches.

This paper is completely self-contained and independent of the previous
papers about TCM (which were of experimental nature and about the batch
setting, in contrast to this paper’s on-line setting).

2 Region predictors

Our basic protocol is as follows. Nature outputs pairs

(x1, y1), (x2, y2), . . . (1)

called examples. Each example (xi, yi) consists of an object xi and its label
yi; e.g., the objects can be hand-written digits and yi their classifications
(numbers from 0 to 9). The objects are elements of a measurable space X
called the object space and the labels are elements of a measurable space Y
called the label space. We will use the notation Z := X×Y for the example
space; therefore, the infinite data sequence (1) will be an element of the
measurable space Z∞.

We will be assuming that the data sequence (1) is output according to
some probability distribution P in Z∞. The usual further assumption made
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Figure 2: TCM at 99%

in PAC theory is that P is an i.i.d. distribution, i.e., P = Q∞, where Q is
a distribution in Z (in other words, that individual examples are generated
by Q independently of each other). For us, it will be sufficient to make
the weaker assumption that P is exchangeable: for every positive integer n,
every permutation π : {1, . . . , n} → {1, . . . , n} of the set {1, . . . , n}, and
every measurable set E ⊆ Zn,

P {(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E}
= P

{
(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E

}
.

The difference is small, however (in the current context of infinite data se-
quences): according to de Finetti’s representation theorem (see, e.g., [9],
Theorem 1.49), every exchangeable distribution is a mixture of i.i.d. distri-
butions provided the example space Z is Borel.

We are interested in algorithms for predicting, at every trial n, the la-
bel yn given the object xn and all the previous examples, from (x1, y1) to
(xn−1, yn−1). Since we are interested in prediction with confidence, our algo-
rithms are given an extra input (1− δ) ∈ (0, 1), which we call the confidence
level. Formally, we define a region predictor to be a function

Γ : Z∗ ×X× (0, 1) → 2Y (2)

(2Y is the set of all subsets of Y; the argument (1−δ) ∈ (0, 1) will be written
as subindex) which, for every confidence levels 1− δ1 ≤ 1− δ2, every positive



integer n, and every incomplete data sequence

x1, y1, . . . , xn−1, yn−1, xn (3)

(we often ignore unnecessary parentheses, such as those around (xi, yi)) sat-
isfies

Γ1−δ1 (x1, y1, . . . , xn−1, yn−1, xn)

⊆ Γ1−δ2 (x1, y1, . . . , xn−1, yn−1, xn) .
(4)

Intuitively, given the incomplete data sequence (3) and a confidence level
1− δ, the region predictor Γ predicts that

yn ∈ Γ1−δ (x1, y1, . . . , xn−1, yn−1, xn) ,

and the larger 1 − δ the more emphatic the prediction; condition (4) is a
natural requirement of consistency. Formally, for any infinite data sequence

ω = (x1, y1, x2, y2, . . .), (5)

confidence level 1− δ, and positive integer n, we define the number of errors
that Γ makes at the confidence level 1− δ on the sequence ω during the first
n trials to be

Errn(Γ1−δ, ω) := #{i = 1, . . . , n :

yi /∈ Γ1−δ (x1, y1, . . . , xi−1, yi−1, xi)},
where #B stands for the size of the set B. Sometimes we will also need the
individual prediction results

errn(Γ1−δ, ω) := Errn−Errn−1

=

{
1 if yn /∈ Γ1−δ (x1, y1, . . . , xn−1, yn−1, xn)
0 otherwise

(6)

and the whole infinite sequence of prediction results

err(Γ1−δ, ω) :=

(err1(Γ1−δ, ω), err2(Γ1−δ, ω), . . .) .

In §4 we will also consider randomised region predictors, which depend,
additionally, on an element of an auxiliary probability space.



3 Transductive Confidence Machine

Transductive Confidence Machine (TCM) is a way to define a region predictor
from a “bare predictions” algorithm. Formally, it is a way of transition from
what we call an “individual strangeness measure” to a region predictor; first
we will give formal definitions and then give a simple example of an individual
strangeness measure.

A family of measurable functions {An : n ∈ N}, where An : Zn →
Rn for all n, N is the set of all positive integers and R is the set of all
real numbers (equipped with the Borel σ-algebra), is called an individual
strangeness measure if, for any n ∈ N, any permutation π of {1, . . . , n}, any
(z1, . . . , zn) ∈ Zn, and any (α1, . . . , αn) ∈ Rn,

(α1, . . . , αn) = An(z1, . . . , zn) =⇒
(απ(1), . . . , απ(n)) = An(zπ(1), . . . , zπ(n)).

(7)

In other words,
An : (z1, . . . , zn) 7→ (α1, . . . , αn) (8)

is called an individual strangeness measure if every αi is determined by
the (unordered) bag *z1, . . . , zn+ and zi. (The difference between the bag
*z1, . . . , zn+ and the set {z1, . . . , zn} is that the former can contain several
copies of the same element.)

The TCM associated with the individual strangeness measure An is the
following region predictor:

Γ1−δ (x1, y1, . . . , xn−1, yn−1, xn) (9)

is defined to be the set of all labels y ∈ Y such that

#{i = 1, . . . , n : αi ≥ αn}
n

> δ, (10)

where
(α1, . . . , αn) :=

An((x1, y1), . . . , (xn−1, yn−1), (xn, y)).
(11)

In general, a TCM is the TCM associated with some individual strangeness
measure.



The definition of TCM can be illustrated by the following simple example
of an individual strangeness measure, the one used in producing Figures 1–
4: mapping (8) can be defined, in the spirit of the 1-Nearest Neighbour
Algorithm, as (assuming the objects are vectors in a Euclidean space)

αi :=
minj 6=i:yj=yi

d(xi, xj)

minj 6=i:yj 6=yi
d(xi, xj)

, (12)

where d is the Euclidean distance (i.e., an object is considered strange if it is
in the middle of objects labelled in a different way and is far from the objects
labelled in the same way).

Of course, there are many other ways of defining individual strangeness
measures (e.g., [8, 15] used the Lagrange multipliers in Support Vector Ma-
chine as the αs). As soon as we have an individual strangeness measure, the
corresponding TCM is defined automatically in a simple way (cf. (9)–(11));
in particular, the learning component of TCM always lies in the individual
strangeness measure.

Let us say that a set E ⊆ {0, 1}∞ is monotonic if, for any two infinite
binary sequences (a1, a2, . . .) and (b1, b2, . . .),

(a1, a2, . . .) ∈ E
ai ≤ bi, ∀i

}
=⇒ (b1, b2, . . .) ∈ E. (13)

The following result shows that, as far as upper bounds on P{err ∈ E} for
monotonic E are concerned, we can assume that the error probability of Γ is
δ at every trial and errors happen independently at different trials.

Theorem 1 For any confidence level 1 − δ, any exchangeable probability
distribution P in Z∞, and any monotonic E ⊆ {0, 1}∞, any TCM Γ satisfies

P {ω : err(Γ1−δ, ω) ∈ E} ≤ B∞
δ (E), (14)

where Bδ is the Bernoulli distribution in {0, 1} with the parameter δ:
Bδ{1} = δ and Bδ{0} = 1− δ.

Corollary 1 Each TCM Γ is conservatively well-calibrated in the sense
that, for any exchangeable probability distribution P in Z∞ and any con-
fidence level 1− δ,

lim sup
n→∞

Errn(Γ1−δ, ω)

n
≤ δ (15)

for P -almost all ω ∈ Z∞.



This corollary immediately follows from the usual strong law of large numbers
and Theorem 1 since the complement of (15) is monotonic. Using, instead,
the law of the iterated logarithm, we can strengthen (15) to

lim sup
n→∞

Errn(Γ1−δ, ω)− nδ√
2δ(1− δ)n ln ln n

≤ 1.

We will also state two finite-sample implications of Theorem 1: Hoeffd-
ing’s inequality (see, e.g., [2], Theorem 8.1) implies that, for any positive
integer N and any constant ε > 0,

P {ω : ErrN(Γ1−δ, ω) ≥ N(δ + ε)} ≤ e−2Nε2 ;

the central limit theorem implies that, for any constant c,

lim sup
N→∞

P
{

ω : ErrN(Γ1−δ, ω) ≥ Nδ + c
√

N
}

≤ 1√
2π

∫ ∞

c√
δ(1−δ)

e−u2/2du.

4 Randomised Transductive Confidence Ma-

chine

In this section we introduce a modification of TCM which will allow us to
simplify, strengthen, and prove easily Theorem 1. The randomised Transduc-
tive Confidence Machine (rTCM) associated with the individual strangeness
measure An is the following randomised region predictor Γ: for any label
y ∈ Y,

1. if #{i = 1, . . . , n : αi > αn}/n > δ (as before, the αs are defined
by (11)), the label y is included in (9);

2. if #{i = 1, . . . , n : αi ≥ αn}/n ≤ δ, y is not included in (9);

3. otherwise, y is included in (9) with probability

#{i = 1, . . . , n : αi ≥ αn} − nδ

#{i = 1, . . . , n : αi = αn} . (16)



In the typical case where all or almost all α1, . . . , αn are different, there is
very little difference between TCM and rTCM (provided n is not too small).

To make the definition of rTCM more formal, we introduce the auxiliary
probability space ([0, 1]∞, U∞), where [0, 1]∞ is equipped with the standard
σ-algebra and U is the uniform probability distribution in [0, 1]; intuitively,
(τ1, τ2, . . .) ∈ [0, 1]∞ are random numbers for use at trials 1, 2, . . ., respec-
tively, produced by a random number generator. The rTCM Γ is a function
of the type

Γ : Z∗ ×X× (0, 1)× [0, 1] → 2Y

(cf. (2)) where the dependence on the extra argument τ ∈ [0, 1] (random
number) arises because of item 3 of the definition of rTCM; for concreteness,
we interpret it as: y is included in Γ1−δ (x1, y1, . . . , xn−1, yn−1, xn, τn) if

τn <
#{i : αi ≥ αn} − nδ

#{i : αi = αn} . (17)

Notice that functions such as err depend on the extra argument τ ∈ [0, 1]∞

in the case of rTCM.

Theorem 2 For any rTCM Γ, any confidence level 1−δ, and any exchange-
able probability distribution P in Z∞, the image of P×U∞ under the mapping

(ω ∈ Z∞, τ ∈ [0, 1]∞) 7→ err(Γ1−δ, ω, τ)

is the probability distribution B∞
δ of independent Bernoulli trials with param-

eter δ.

This theorem may appear too strong to be true: it is generally believed
that to make categorical assertions about error probabilities some Bayesian-
type assumptions are needed and that the general i.i.d. assumption is not
sufficient. For example, in the theory of PAC learning an error probability ε is
only asserted with some probability 1−δ. It should be remembered, however,
that Theorem 2 does not assert that the probability of error, errn = 1, is δ
conditionally on knowing the whole past (3); it is only asserted that it is
δ unconditionally and conditionally on knowing err1, . . . , errn−1. (Actually,
it is quite obvious that the probability of error is often not equal to δ if
the whole past is known: if the predictive region is empty, the conditional
probability of error is 1; to balance this, the conditional probability that a
non-empty predictive region is wrong will tend to be less than δ.)



Theorem 2 immediately implies Theorem 1: if an rTCM Γ and a TCM Γ†

are constructed from the same individual strangeness measure, the latter’s
errors err†n never exceed the former’s errors errn, err†n ≤ errn. Theorem 2 also
implies

Corollary 2 Every rTCM Γ is precisely well-calibrated in the sense that

lim
n→∞

Errn(Γ1−δ, ω, τ)

n
= δ

for P × U∞-almost all ω ∈ Z∞ and τ ∈ [0, 1]∞.

5 Inductive Confidence Machine

For large data sets, TCMs can be computationally inefficient. Inductive Con-
fidence Machine (ICM) is a modification of TCM which sacrifices (in typical
cases) some predictive accuracy for computational efficiency (for details of
ICM in the batch setting, see [6]).

In the case of ICMs, the role of an individual strangeness measure will
be played by a pair consisting of an “inductive algorithm” and “discrepancy
measure”. Let Ŷ be a prediction space (an arbitrary measurable space).
An inductive algorithm D is a measurable function that maps every bag
*z1, . . . , zn+ (of any size) of elements of Z to a function D*z1,...,zn+ : X →
Ŷ. The usual interpretation of D*z1,...,zn+ is that it is a decision rule, found
from the training set *z1, . . . , zn+, which computes the predicted label ŷ :=
D*z1,...,zn+(x) for any new object x. Usually, but not always, Ŷ = Y. A

discrepancy measure is a measurable function ∆ : Y × Ŷ → R; it will be
used to measure the discrepancy between the predicted label ŷ and the true
label y.

Given an inductive algorithm D and a discrepancy measure ∆, we
can define an individual strangeness measure {An}∞n=1 as follows: for any
((x1, y1), . . . , (xn, yn)) in Z∗, the values

(α1, . . . , αn) = An((x1, y1), . . . , (xn, yn)) (18)

can be defined by the formula

αi := ∆
(
yi, D*(x1,y1),...,(xn,yn)+(xi)

)
(19)



or the formula

αi := ∆(yi,

D*(x1,y1),...,(xi−1,yi−1),(xi+1,yi+1),...,(xn,yn)+(xi)).
(20)

This shows that with every inductive algorithm and discrepancy measure we
can associate a TCM. Formula (20) is more natural than (19) but typically
leads to less computationally efficient TCMs.

At a crude level, one can divide inductive algorithms into two classes:
“proper inductive algorithms” and “transductive algorithms” (see [12]; some-
times transductive algorithms are called “instance-based”). For proper in-
ductive algorithms, D*z1,...,zn+ can be computed, in some sense: e.g., D*z1,...,zn+
may be described by a polynomial, and computing D*z1,...,zn+ may mean com-
puting the coefficients of the polynomial; as soon as D*z1,...,zn+ is computed,
computing D*z1,...,zn+(x) for a new object x takes very little time. For trans-
ductive algorithms (such as the Nearest Neighbours Algorithms), relatively
little can be done before seeing the new object x; even allowing considerable
time for pre-processing *z1, . . . , zn+, computing D*z1,...,zn+(x) will be a difficult
task.

Notice that, even when formula (19) rather than (20) is used and D is
a proper inductive algorithm, the TCM based on the individual strangeness
measure (19) will still be inefficient: for every new example (xn, yn), comput-
ing Γ1−δ(x1, y1, . . . , xn−1, yn−1, xn) will require constructing a new decision
rule.

To define an ICM from an inductive algorithm D and a discrepancy mea-
sure ∆, first fix a finite or infinite sequence of positive integer parameters
m1,m2, . . . (called training trials); it is required that m1 < m2 < · · ·. If the
sequence (m1,m2, . . .) = (m1, . . . , ml) is finite, we set mi := ∞ for i > l.
The ICM based on D, ∆, and the sequence m1,m2, . . . of training trials is
defined to be the region predictor Γ such that Γ1−δ(x1, y1, . . . , xn−1, yn−1, xn)
is computed as follows:

• if n ≤ m1, Γ1−δ(x1, y1, . . . , xn−1, yn−1, xn) is found using a fixed TCM;

• otherwise, find the k such that mk < n ≤ mk+1 and set

Γ1−δ(x1, y1, . . . , xn−1, yn−1, xn) :=
{

y ∈ Y :

#{j = mk + 1, . . . , n : αj ≥ αn}
n−mk

> δ
}

,
(21)



where the αs are defined by

αj := ∆
(
yj, D*(x1,y1),...,(xmk

,ymk
)+(xj)

)
,

j = mk + 1, . . . , n− 1,

αn := ∆
(
y,D*(x1,y1),...,(xmk

,ymk
)+(xn)

)
.

(22)

We can see that ICM requires recomputing the decision rule being used
not at every trial but only at the training trials m1, m2, . . .; the rate of
growth of mi determines the chosen balance between predictive accuracy
and computational efficiency. The most important case is perhaps where
there is only one training trial m1. Randomised ICM (rICM) can be defined
analogously to rTCM.

Theorem 3 Theorems 1 and 2 continue to hold in the case of ICMs and
rICMs, respectively.

Let a and b be positive numbers such that either a ≥ 1 and b ≥ 1 or a > 1.
If an individual strangeness measure An is computable in time Θ(na logb n),
the TCM associated with An spends time Θ(na+1 logb n) on the computations
needed for the first n trials. On the other hand, if an inductive algorithm D
is computable in time Θ(na logb n), a discrepancy measure ∆ is computable
in constant time, and the sequence mi is infinite and grows exponentially,
the ICM based on D, ∆, and (mi) spends the same, to within a constant
factor, time Θ(na logb n). (We have been assuming that the TCM or ICM is
given An or D as an oracle and the label space Y is finite and fixed.) In the
case where the sequence (mi) is finite, the ICM’s computation time becomes
Θ(n log n) (e.g., use red-black trees for storing αis; [1], Chapters 14 and 15).

The performance of the Nearest Neighbour ICM on the USPS data set
with training trial 4649 (the middle of the data set) is shown in Figures 3
and 4 for the confidence levels 95% and 99%, respectively; in accordance
with Theorem 3, starting from scratch at trial 4670 does not affect the error
rate (solid line). It can be seen from these figures (and is obvious anyway)
that the ICM’s performance (measured by the number of uncertain predic-
tions) deteriorates sharply after training trials mi. Perhaps in practice there
should be short spells of “learning” after each training trial, when the ICM
is provided with fresh “training examples” and its predictions are not used
or evaluated.
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Figure 3: ICM at 95%

6 Conclusion

The main advantages of this paper’s approach are:

• As compared to the standard theory of PAC learning, our error bounds
are practically meaningful (see §1 and Figures 1–4).

• As compared to the theory of Bayesian learning, we do not assume
anything beyond the exchangeability of the underlying probability dis-
tribution.

• The usual justification (“validity”) of TCM with confidence level 1− δ
is the fact that the error probability at any trial does not exceed δ (see,
e.g., [4], Theorem 1). This paper adds the crucial observation that, in
the case of rTCM, the events “error at trial n”, n = 1, 2, . . ., not only
have probability δ, but also are independent of each other. Very little
can be said about a sequence of events of probability δ, but combined
with independence this gives us a plethora of known properties for
Bernoulli trials.
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A Appendix: Proofs

A.1 Proof of Theorem 2

First we explain the basic idea of the proof. To show that (err1, . . . , errN)
is distributed as BN

δ (it will be easy to get rid of the assumption of a fixed
horizon N), we use the standard idea of reversing the time (see, e.g., the
proof of de Finetti’s theorem in [9]). We can imagine that the sample
(z1, . . . , zN) is generated in two steps: first, the bag *z1, . . . , zN+ is gener-
ated from some probability distribution (namely, the image of P under the
mapping (z1, z2, . . .) 7→ *z1, . . . , zN+), and then the actual sample (z1, . . . , zN)
is chosen randomly from the set of all orderings of the bag *z1, . . . , zN+. Al-
ready the second step ensures that, conditionally on knowing *z1, . . . , zN+
(and, therefore, unconditionally), the sequence (errN , . . . , err1) is distributed
as BN

δ . Indeed, roughly speaking (i.e., ignoring ties and borderline effects),
errN will be 1 if αN is among the Nδ largest αi, and the probability of this is δ
since all permutations are equiprobable; when zN is disclosed, the value errN

will be settled; conditionally on knowing *z1, . . . , zN+ and zN (and, therefore,
knowing *z1, . . . , zN−1+), errN−1 will also be 1 with probability δ, and so on.

We start the proof by giving some preliminary definitions. The σ-algebra
Gn, n = 0, 1, 2, . . ., is the collection of all measurable sets E ⊆ Z∞ which
satisfy

(z1, z2, . . .) ∈ E =⇒
(zπ(1), . . . , zπ(n), zn+1, zn+2, . . .) ∈ E

for any permutation π of {1, . . . , n}. In particular, G0 (the most informative
σ-algebra) coincides with the original σ-algebra on Z∞; G0 ⊇ G1 ⊇ · · ·. We
will use the notation EF for the conditional expectation w.r. to a σ-algebra
F ; if necessary, the underlying probability distribution will be given as an



upper index. Similarly, PF will stand for the conditional probability w.r. to
F .

Fix a TCM Γ and a confidence level 1− δ; these elements will usually be
left implicit in our notation. The proof will be based on the following lemma.

Lemma 1 For any trial n,

EP×U∞
Gn

(errn) = δ. (23)

Proof Define
error(z1, . . . , zn) := errn(Γ1−δ, ω),

where ω ∈ Z∞ is any continuation of the sequence (z1, . . . , zn); we do not
reflect in the notation the dependence on the random numbers (τ1, τ2, . . .) ∈
[0, 1]∞. First we prove that, for any (z1, . . . , zn),

1

n!

∑
π

E error(zπ(1), . . . , zπ(n)) = δ, (24)

where π ranges over all permutations of {1, . . . , n} and E stands for the
expected value w.r. to the distribution U∞; it is intuitively clear, and will be
easy to show formally, that (24) implies (23).

Let us fix a sequence (z1, . . . , zn) ∈ Zn. As usual we denote by αi the
result of applying the individual strangeness measure underlying Γ to the
given examples: (α1, . . . , αn) = An(z1, . . . , zn). For every i = 1, . . . , n define

p+
i :=

#{j = 1, . . . , n : αj ≥ αi}
n

,

p−i :=
#{j = 1, . . . , n : αj > αi}

n
.

It is clear that p−i < p+
i and

p+
i − p−i =

#{j : αj = αi}
n

.

Notice that the semi-closed intervals [p−i , p+
i ), i = 1, . . . , n, either coincide or

are disjoint; it is also easy to see that they “lie next to each other”, in the
sense that their union is also a semi-closed interval (namely, [0, 1)).

Let us say that an example zi (more accurately, its index i) is

• strange if p+
i ≤ δ



• ordinary if p−i > δ

• borderline if p−i ≤ δ < p+
i .

We will use the notation p− := p−i and p+ := p+
i where i is the index of

any borderline example. Notice that the fraction of strange examples (i.e.,
the number of strange examples divided by n) is p−, the fraction of ordinary
examples is 1− p+, and the fraction of borderline examples is p+ − p−.

By the definition of rTCM, error(zπ(1), . . . , zπ(n)) is 1 if the last example
zπ(n) is strange, is 0 if the last example is ordinary, and is 0 with probability

p+ − δ

p+ − p−
(25)

(cf. (16)) if the last example is borderline. Therefore, the expected value
of error(zπ(1), . . . , zπ(n)) over the random numbers (τ1τ2 . . .) ∈ [0, 1]∞ and
equiprobable permutations π of {1, . . . , n} (in other words, the left-hand
side of (24)) is

p− + (p+ − p−)
δ − p−

p+ − p−
= δ. (26)

This proves (24).
It remains to prove that (24) implies (23). Let us assume (24). We say

that a set E ⊆ Zn is symmetric if

(z1, . . . , zn) ∈ E =⇒ (zπ(1), . . . , zπ(n)) ∈ E

for any permutation π of {1, . . . , n}. We are required to prove that
∫

E

(E error(z1, . . . , zn)− δ) dP = 0 (27)

for any symmetric measurable set E ⊆ Zn.
First we notice that, if G : Ω → Ω is a bijection defined on a measur-

able space Ω and measurable in both directions, then for every measurable
function f : Ω → R, measurable set E ⊆ Ω, and measure P on Ω,

∫

E

fdP =

∫

E′
f ′dP ′, (28)

where the set E ′, function f ′, and measure P ′ are defined by

E ′ := G−1(E), f ′(ω) := f(G(ω)), P ′(A) := P (G(A)).



Applying this to Ω := Zn,

G(z1, . . . , zn) := (zπ(1), . . . , zπ(n)),

and
f(z1, . . . , zn) := E error(z1, . . . , zn)− δ, (29)

where π is a permutation, we obtain

∫

E

(E error(z1, . . . , zn)− δ) dP =
∫

E

(
E error(zπ(1), . . . , zπ(n))− δ

)
dP

(remember that E ′ = E and P ′ = P ) and so, from (24),

∫

E

(E error(z1, . . . , zn)− δ) dP =

1

n!

∑
π

∫

E

(
E error(zπ(1), . . . , zπ(n))− δ

)
dP = 0.

The other basic result that we will need is the following simple lemma.

Lemma 2 For any trial n ≥ 1, errn is Gn−1-measurable.

Proof Fix a trial n. We are required to prove that the event {errn = 1}
is Gn−1-measurable, i.e., invariant w.r. to permutations of the first n −
1 examples. By the definition, (6), this follows from the invariance of
Γ1−δ(z1, . . . , zn−1, xn) w.r. to permutations of the first n−1 examples, which,
in its turn, follows (see (10) and (11)) from the invariance of the underlying
individual strangeness measure (see (7)).

The proof of Theorem 2 will use the following properties of conditional
expectations (see, e.g., [10], §II.7.4):

A. If G and F are σ-algebras, G ⊆ F , ξ and η are bounded F -measurable
random variables, and η is G-measurable, EG(ξη) = η EG(ξ) a.s.

B. If G and F are σ-algebras, G ⊆ F , and ξ is a random variable,

EG(EF(ξ)) = EG(ξ) a.s.; in particular, E(EF(ξ)) = E(ξ).



Fix temporarily positive integer N . To simplify the formulas, we will
often omit curly braces. First we prove that, for any n = 1, . . . , N ,

PGn((errn, . . . , err1) = (ωn, . . . , ω1)) = δk(1− δ)n−k, (30)

where P refers to the probability distribution P × U∞ and k is the number
of 1s in (ωn, . . . , ω1). The proof is by induction in n. For n = 1, (30)
immediately follows from Lemma 1. For n > 1 we obtain, making use of
Lemmas 1 and 2, properties A and B of conditional expectations, and the
inductive assumption:

PGn((errn, . . . , err1) = (ωn, . . . , ω1))

= EGn

(
EGn−1

(
Ierrn=ωnI(errn−1,...,err1)=(ωn−1,...,ω1)

))

= EGn

(
Ierrn=ωn EGn−1

(
I(errn−1,...,err1)=(ωn−1,...,ω1)

))

= EGn

(
Ierrn=ωnδk†(1− δ)(n−1)−k†

)
= δk(1− δ)n−k

almost surely, where IE means the indicator of E, k and k† are the number
of 1s in (ωn, . . . , ω1) and (ωn−1, . . . , ω1), respectively, and the expected value

E is taken over P = P × U∞.
By property B, (30) immediately implies

P ((errN , . . . , err1) = (ωN , . . . , ω1)) = δk(1− δ)N−k,

where k is the number of 1s in (ωN . . . ω1). Therefore, we have proved that
the distribution of the random sequence err ∈ {0, 1}∞ coincides with B∞

δ on
the σ-algebra FN generated by the events {(ω1, ω2, . . .) ∈ {0, 1}∞ : ωi = 1},
i = 1, . . . , N . It is well known (see, e.g., [10], Theorem II.3.3) that this
implies that the distribution of err coincides with B∞

δ on all measurable sets
in {0, 1}∞.

A.2 Precise statement of Theorem 3

First we define rICM formally. The rICM based on D, ∆, and the parametric
sequence m1,m2, . . . (as before, mi are required to satisfy m1 < m2 < · · ·)
is defined to be the randomised region predictor Γ such that the predictive
region Γ1−δ(x1, y1, . . . , xn−1, yn−1, xn, τn) is computed as follows:

• if n ≤ m1, the predictive region is found using a fixed rTCM;



• otherwise, find the k such that mk < n ≤ mk+1, and, for each label
y ∈ Y,

– include y in the predictive region if

#{j = mk + 1, . . . , n : αj > αn}
n−mk

> δ,

– do not include if

#{j = mk + 1, . . . , n : αj ≥ αn}
n−mk

≤ δ,

– if neither condition is satisfied, include y in the predictive region
if and only if

τn <
#{j : αj ≥ αn} − (n−mk)δ

#{j : αj = αn} (31)

j ranging over {mk + 1, . . . , n},
where αmk+1, . . . , αn are defined by (22).

The main assertion made in Theorem 3 is that the image of the probability
distribution P × U∞ under the mapping

(ω ∈ Z∞, τ ∈ [0, 1]∞) 7→ err(Γ1−δ, ω, τ)

is B∞
δ for any rICM Γ.

Remark In our definitions of rTCM and rICM we assumed that the same
random number τn is used for every potential label y of xn. In fact, assuming
Y is finite, we can also use a separate random number τ y

n for each y ∈ Y,
with the random numbers τ y

n , n = 1, 2, . . ., y ∈ Y, independent. On the
other hand, an arbitrary correlation between τ y

n , y ∈ Y, can be allowed;
Theorems 2 and 3 will continue to hold as long as the random numbers τ yn

n ,
n = 1, 2, . . ., are independent.



A.3 Proof of Theorem 3

Let us set m0 := 0. In this proof, the σ-algebra Gn, n = 1, 2, . . ., is the
collection of all measurable sets E ⊆ Z∞ which satisfy the following:

• if k is the largest non-negative integer such that mk < n,

(z1, z2, . . .) ∈ E =⇒
(z1, . . . , zmk

, zπ(mk+1), . . . , zπ(n),

zn+1, zn+2, . . .) ∈ E

for any permutation π of {mk + 1, . . . , n};
• if k is any positive integer such that mk < n,

(z1, z2, . . .) ∈ E =⇒
(z1, . . . , zmk−1

, zπ(mk−1+1), . . . , zπ(mk),

zmk+1, zmk+2, . . .) ∈ E

for any permutation π of {mk−1 + 1, . . . , mk}.
As before, G0 is the original σ-algebra on Z∞. It is obvious that G0 ⊇ G1 ⊇
· · ·.

The proof of Theorem 2 obviously works for ICMs as well, with the pos-
sible exception of Lemma 1. Therefore, in this subsection we will only show
how to prove the following analogue of Lemma 1.

Lemma 3 Any rICM satisfies (23), for any confidence level 1 − δ and any
trial n.

Proof If n ≤ m1, an rTCM is used and so we have nothing to prove; we will
assume n > m1. The proof is parallel to the proof of Lemma 1.

Analogously to the reduction of the proof of Lemma 1 to proving (24) for
any (z1, . . . , zn), we first prove that, for any (z1, . . . , zn),

1

(n−mk)!

∑
π

E error(z1, . . . , zmk
,

zπ(mk+1), . . . , zπ(n)) = δ,

(32)



where k is the largest positive integer for which mk < n and π ranges over
all permutations of {mk + 1, . . . , n}. Define αj, j = mk + 1, . . . , n, by the
formula

αj := ∆
(
yj, D*(x1,y1),...,(xmk

,ymk
)+(xj)

)

(cf. (22)). For every i = mk + 1, . . . , n define

p+
i :=

#{j = mk + 1, . . . , n : αj ≥ αi}
n−mk

,

p−i :=
#{j = mk + 1, . . . , n : αj > αi}

n−mk

.

It is clear that p−i < p+
i and

p+
i − p−i =

#{j = mk + 1, . . . , n : αj = αi}
n−mk

.

Again the semi-closed intervals [p−i , p+
i ), i = mk +1, . . . , n, either coincide or

are disjoint; they also “lie next to each other”.
Let us say that an example zi, i = mk + 1, . . . , n, is

• strange if p+
i ≤ δ

• ordinary if p−i > δ

• borderline if p−i ≤ δ < p+
i .

We will use the notation p− := p−i and p+ := p+
i , where i is the index of any

borderline example. The fraction of strange examples (i.e., the number of
strange examples divided by n−mk) is p−, the fraction of ordinary examples
is 1− p+, and the fraction of borderline examples is p+ − p−.

By the definition of rICM,

error(z1, . . . , zmk
, zπ(mk+1), . . . , zπ(n))

is 1 if the last example zπ(n) is strange, is 0 if the last example is ordinary,
and is 0 with probability (25) (cf. (31)) if the last example is borderline.
Therefore, the expected value of error(z1, . . . , zmk

, zπ(mk+1), . . . , zπ(n)) over
all equiprobable permutations π of {mk + 1, . . . , n} and random numbers
(τ1τ2 . . .) ∈ [0, 1]∞ (i.e., the left-hand side of (32)) is (26). This proves (32).



To finish the proof it remains to establish (23). We say that a set E ⊆ Zn

is calibration symmetric if

(z1, . . . , zn) ∈ E =⇒
(z1, . . . , zmk

, zπ(mk+1), . . . , zπ(n)) ∈ E

for any permutation π of {mk + 1, . . . , n}. It is sufficient to prove that

∫

E

(E error(z1, . . . , zn)− δ) dP = 0

for any calibration symmetric measurable set E ⊆ Zn.
Applying (28) to Ω := Zn,

G(z1, . . . , zn) := (z1, . . . , zmk
, zπ(mk+1), . . . , zπ(n)),

and (29), where π is a permutation of {mk + 1, . . . , n}, we obtain

∫

E

(E error(z1, . . . , zn)− δ) dP =
∫

E

(
E error(z1, . . . , zmk

, zπ(mk+1), . . . , zπ(n))− δ
)
dP

(again E ′ = E and P ′ = P ) and so, from (32),

∫

E

(E error(z1, . . . , zn)− δ) dP =

1

(n−mk)!

∑
π

∫

E

(E error(z1, . . . , zmk
,

zπ(mk+1), . . . , zπ(n))− δ)dP = 0,

π ranging over the permutations of {mk + 1, . . . , n}.
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