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Abstract

In the online prediction scenario the predictor’s task is to predict the label
of an object given by Nature at each trial, based on the labels for the objects
learned so far. At each trial Nature discloses the correct label for the current
object, so the predictor is being taught. While this pure online scenario
is convenient for theoretical studies, it is a poor model for many practical
applications: the situation where the correct answers are given immediately
after each prediction does not often occur in reality. In this work we suggest
a more general scenario for online prediction, according to which correct
answers may be given with some delay and not at every trial. We modify
a particular class of region predictors, Transductive Confidence Machines,
which have been proved to have several useful properties, to work in the
new scenario, and find some sufficient conditions under which their rates
of erroneous and uncertain predictions remain the same in the new online
scenario as in the traditional one.
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1 Introduction

Online region predictors work as follows. Nature outputs some examples,
i.e., pairs consisting of an object and a classification (e.g., an object may be
a handwritten digit and its classification may be any number between 0 and
9). We assume that examples are independent and identically distributed
according to some probability distribution P. At every trial a predictor
gives a region (a set) of possible labels for the current object. A region
may consist of one label (the best case if the label is correct) but it also
may consist of all possible labels (this practically useless prediction is always
correct). A predictor may also output an empty prediction, which always
leads to an error. A prediction which consists of more then one element
is called uncertain. There are two main criteria for evaluating how good a
region predictor is: the error rate and the rate of uncertain predictions.

While the online scenario is convenient for theoretical studies, in prac-
tice, however, rarely does one immediately get the true label for every object
(otherwise the prediction is not needed). In this paper we suggest the fol-
lowing modified scenario for online prediction, which we call online region
prediction with real teachers. At each trial Nature outputs an object, and at
some trials it also outputs the correct label for one of the previous objects,
so that the predictor can use this data afterwards. Thus, some labels may
never be revealed while others may be revealed with some delay. As before,
examples are assumed to be i.i.d. The trials at and for which true labels are
given are chosen independently of data.

The suggested scenario is studied for a particular class of a region predic-
tors, called Transductive Confidence Machines (TCMs). First introduced in
[4], Transductive Confidence Machine is a way of constructing region predic-
tors from machine-learning algorithms. One of the advantages of the TCM
is that it is always well-calibrated: the number of errors it makes up to trial
n divided by n tends to ¢ almost surely, where § € (0,1) is any pre-specified
“significance level” (see [5]). Moreover, the probability of error at each trial
is 0 and errors are made independently at different trials. (Strictly speak-
ing, this statement is applicable to the version of TCM called “randomised
TCM”; this is the version we consider in this paper. The reader can check
easily that all results carry over to the case of deterministic TCM as well.)

The main result of this paper (Theorem 1) can be illustrated by the
following simple example. Suppose only every kth label is revealed to a
TCM, and even this is done with a delay of [, where k£ and [ are positive



integer constants. Then the algorithm will remain well-calibrated, and its
asymptotic rate of uncertain predictions will not suffer.

In this paper we find sufficient conditions on the amount of information re-
vealed to the TCM up to the nth trial under which it remains well-calibrated
and has the same asymptotic rate of uncertain predictions. A related paper
is [2], which continues research on our model establishing some necessary
conditions for a TCM to remain well-calibrated.

2 Preliminaries

Traditionally, online region prediction protocol is defined as follows. Nature
outputs examples (x1,y1), (T2,¥2),...; each example (x;,y;) consists of an
object x; € X and a label y; € Y, where X and Y are measurable spaces
called the object space and the label space correspondingly. The notation
Z = X x Y is used for the measurable space of all examples. Examples are
drawn according to some probability distribution P> on Z°°.

A region predictor is a measurable function

F’*/<x17y17 s 7In*17yn717xn)7

where n € N, the (z;,y;) € Z, i =1,...,n — 1 are examples and z,, € X is
an object which satisfies

F’Yl(‘rl)ylv S axn—hyn—hx’H) g F’YQ(:L‘17y17 s ,$n_1,yn_1,$n)

whenever v; < v5. We are interested in prediction with confidence, and so
the predictor is given an extra input v = (1 — d) € (0, 1) which is called the
confidence level; the complementary value § is called the significance level.
An important modification of this definition is where the region predictor
is allowed to depend on additional inputs, random numbers 7, € [0, 1] (7
are assumed to be independently distributed according to the uniform dis-
tribution in [0, 1] and to be independent of the examples); however, this case
reduces to the case of deterministic region predictors by extending the object
space X to X x [0, 1], so that 7; becomes an element of the extended object
x;. Therefore, we need not mention the random numbers 7; explicitly.

The number of errors Err, (I';_s) which I" makes at the confidence level
1 — ¢ up to the trial n € N is defined as

#{Z = 17 e, n | Yi ¢ Fl—&(zlayl7 s 7$i—1yyi—l7$i)}‘
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The indicator of an individual error err,, at trial n is defined to be 1 if y,, ¢ ',
and 0 otherwise (we often use the notation I',, instead of

F1—5(:E17 Y1y o3 Tn—1,Yn-1, xn)

when the values of other parameters are clear). Similarly, the number of
uncertain predictions Unc, (I';_s) that I';_s makes up to the trial n € N is
defined to be

#{Z = ]., o, n | ’Fl_(g(l’l,yl, R 7'In—1;yi—17xi)’ > ].},

and the indicator unc,, of uncertain prediction at individual trial n to be 1 if
IT,| > 1 and 0 otherwise.
A region predictor is called well-calibrated if, for any § € (0, 1),

lim Err, (T _s)

n—00 n

— 0 a.s.

under any probability distribution P*° generating the examples.

Transductive Confidence Machine is a region predictor constructed from
a machine-learning algorithm (more precisely, from the so-called individual
strangeness measure). A complete description of how TCMs work can be
found in [5, 6]. In this paper it is sufficient for us to observe that any TCM
has the following properties. First, its errors err;, ¢ € N, are distributed as
independent Bernoulli trials with probability of 1 equal to §, where 1 — ¢ is
the chosen confidence level (in particular, any TCM is well calibrated). And
second, its predictions do not depend on the order of the examples learnt so
far: if I' is a TCM then

F<J;17 Y1,-- -, Tn-1,Yn-1, an) = F('r7r(1)7 Y1)y« - s Tr(n—=1) Yr(n—1), xn)

for any permutation w. We call region predictors satisfying this property
mvariant.

3 Main Result

We suggest the following modified scenario for online region prediction.
We call a function £ : N — N defined on an infinite set N C N a
learning function if L(n) € {1,...,n} for all n € N, and m # n implies



L(m) # L(n) for all m,n € N. The domain of the learning function £ in
this paper is always denoted by N = {nj,ng,...} where ny < ny < ---
We define the total amount of information available at the beginning of trial
n to a prediction algorithm taught according to the learning function £ as
s(n)=#{i|i € N,i <n}.

Suppose that I'y_s is an online region predictor and £ is a learning func-
tion. Then we define the L-taught version of I';_s as follows:

L
Pl*é(xhyla s 7xn—17yn—laajn)

= D16 (Te(mn)s Yem)s - s TL(nypny)s YL(ng(ny) s Tn)-

So at the end of each trial n € N the predictor I'¥ ; “learns” the label Yr(n)
if n € N and “learns” nothing otherwise.
Consider several examples.

Ideal teacher. If N = N and £(n) = n for each n € N, then I'* ; is equal
to F1,5.

Slow teacher with a fixed lag. If N = {I{ + 1,l+2,...} for some [ € N
and L£(n) =n —1[ for n € N, then I'Y ; is a predictor which learns true
labels with the delay (.

Slow teacher. The previous example can be generalised as follows. Let
l(n) = n + lag(n) where lag : N — N is an integer function. We define
N = [(N) and L£(n) = [7'(n), n € N. Then I'* 5 models a predictor
which learns the true label for each example x,, with the delay lag(n).
This is what we call a region predictor with slow teacher with delay lag.

Lazy teacher. Suppose that N # N and £(n) = n, n € N; then I'* 5 is a
region predictor with lazy teachers: it is given true labels immediately
but not on every step.

Prior to stating the main theorem about £-taught TCMs we need to give
one more definition. If I" is a region predictor, set

Unc,(T") . Unc, (T

U(T') = |liminf —(), lim sup Unea(I)

The interval U(I") characterises the asymptotical uncertainty of I'; of course,
this is a random interval, since it depends on the actual examples output by
Nature. It turns out, however, that in the most important case (covering
TCM and L-taught TCM) this interval is close to being deterministic.
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Lemma 1 For each invariant region predictor I' and probability distribution
P in Z there ezists an interval [a,b] C R such that U(I") = |a,b] P*-almost
surely.

Proof The statement of this lemma is an immediate consequence of the
Hewitt-Savage zero-one law (see, e.g., [3]). 1

We will use the notation U(I", P) for the interval whose existence is asserted
in the lemma; we will call it the asymptotical uncertainty of I' with examples
distributed according to P.

Theorem 1 Let Iy 5 be a TCM, let L be a learning function, and let T 4
be the L-taught version of I'y_s. The following statements hold for any prob-
ability distribution P> generating the examples.

o [If
Z (n; _nZi—l) < o0 (1)
i=2 i

then TX 5 is well calibrated.

e [f, for some k € N, n; .y —n; = k from some n on, then U(T'¥ 4 P) =
U5, P).

A discussion of cases in which the first statement of the theorem is satis-
fied is given in the next section.

Proof Suppose that B is a region predictor (such as I';_s or T'X ;). We
introduce the following “predictable” versions of err, (B) and unc,(B):

mn(B) = P{(l’,y) €Z | Yy ¢ B1—5(x17y17‘ e 7xn—17yn—1)x)}u

mn(B) = P{('Iay) eX | ‘Bl—é(xlaylv' e 7xn—1ayn—17x)| > ]-}7




Since Err, (T4 ;) — Err,, (I'4 ) and Unc,, (T'4_;) — Unc, (I'Y ;) are martingales,
and

|err, (Pf_g) — @Ta(If)| < 1,

|uncn(Ff—6) - mn(rlﬁ—dﬂ <1
the martingale strong law of large numbers (see, e.g., [3]) implies that

Err, (T4 ) — Err, (T4 )

lim =0 a.s.
n—oo n
and _
. Une,(Pf_5) — Unca(I'f)
lim =0 a.s;

n—oo n

this actually means that we can study Err,, (T4 ;) and Unc, (I'¥ ;) instead of
Err, (5 5) and Unc, (5 §).

In this proof, where the arguments of functions I'y_s and T'Y 5 are not
given explicitly, we assume that the predictor T' s receives the sequence
(zz- 11 € N) while the predictor I'y_s receives the sequence (Zﬁ(i) 1€ N )
The latter sequence is distributed according to P>, since the choice of £ (and
its domain N), by definition, does not depend on the examples z;, i € N.

We first prove the second statement of the theorem. For any n € N, by
definition of 'Y ; and using the property of a TCM I';_s that it does not
depend on the order of the learnt examples, we have

e, () = P{(e,9) € 21y ¢ T (@09 21, o1, 0) |
= P{(:r,y) €Z|y ¢ Tis(@em), Yen), - - 7~T£(Tbs(n))’yﬁ(ns(n))7x)}
= UNCs(n)41(I'1-s).
Thus, since s(n) = n/k + O(1), we have
n Ln/k]
YT y) =k Y mei(l-5) + O(1),
=1 i=1

and so Unc, (T4 _5) = kUnc, 4 (T1-s) + o(n). The desired statement imme-
diately follows.



Now we proceed with the first statement of the theorem. Clearly,

Err,, (T 5) = niert; (T'y_s)+(ng—n1 )erTo (T _s)+- - -+ (np—np_1 )& 1 (T _s)
(2)
for any k € N. Denote

e, = nerry (I'—5), € = (ng — ny)erry(I'—s), ...

and
€1 =N eI'I'1<F1_5), €y = (n2 — nl) errg(Fl_(;), e

It is easy to see that €; — ¢;, i € N, is a martingale difference sequence with
respect to I'y_s’s input sequence, zz(,), ¢ € N. Moreover,

E((€ —€)? | 22y, - -+ 220 0) < (ns — niz1)?,

for ¢ € N, assuming that ng = 0. Thus,

S 1 = > n;, —n;— 2
Z EE((@ — )’ | Zeny)s - s 2L ) < Z % < 00,
i=1 — 2

We can use (2) and the martingale strong law of large numbers to conclude
that, as k£ — o0,

1 /— 1
n—(Errnk (X ;) — ei) =— ) (6 —¢)—0as.
K i=1 (g
Analogously,
1 (52 =
— el —0=— e, —0(n; —n;—_1)) — 0 a.s.
(Z) o B

And so
1 L 1 L
EErrH(Flfé) < E (Err"s(n)<F176) + (ns(n)-i-l - ns(n))) —0 a.S.,

which implies the first statement of the theorem: 1 Err,(I'f ;) — 0 as. 1



4 Remarks on the conditions of the theorem
In this short section we will see that T'X 5 is well calibrated when

Nk+1

i :1+O<\/Ellnk)' (3)

For example, it is well calibrated when ny grows as exp(vk/Ink); on the
other hand, our result cannot guarantee that it is well calibrated if ny grows
as exp(Vk). Indeed, condition (1) can be rewritten as

o'} n 2
i+1

E (ln Z+> < 00;
n;

1=2

therefore, it is satisfied when In(ny1/ny) = O(1/(vkInk)); this is equivalent
to (3).
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