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Abstract

It has been shown recently that Transductive Confidence Machine (TCM) is
automatically well-calibrated when used in the on-line mode and provided
that the data sequence is generated by an exchangeable distribution. In this
paper we strengthen this result by relaxing the assumption of exchangeability
of the data-generating distribution to the much weaker assumption that the
data agrees with a given “on-line compression model”.
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1 Introduction

Transductive Confidence Machine (TCM) was introduced in (Saunders et al.,
1999; Vovk et al., 1999) as a practically meaningful way of providing informa-
tion about reliability of the predictions made. In (Vovk, 2002) it was shown
that TCM’s confidence information is valid in a strong non-asymptotic sense
under the standard assumption that the examples are exchangeable. In §2 we
define a general class of models, called “on-line compression models”, which
include not only the exchangeability model but also the Gaussian model, the
Markov model, and many other interesting models. An on-line compression
model (OCM) is an automaton (usually infinite) for summarizing the infor-
mation about observed data efficiently. It is usually impossible to restore
the data from OCM’s summary (so OCM performs lossy compression), but
it can be argued that the only information lost is noise, since one of our
requirements is that the summary should be a “sufficient statistic”. In §3 we
construct “confidence transducers” and state the main result of the paper
(proved in Appendix A) showing that the confidence information provided
by confidence transducers is valid in a strong sense. In the last three sec-
tions, §4–6, we consider several interesting examples of on-line compression
models: Gaussian, Gauss linear, Markov, exchangeability, and hypergraph-
ical models; two of these models (Gauss linear and Markov) do not assume
the exchangeability of examples. The idea of compression modelling was the
main element of Kolmogorov’s programme for applications of probability,
which is discussed in Appendix B.

2 On-line compression models

We are interested in making predictions about a sequence of examples
z1, z2, . . . output by Nature. Typically we will want to say something about
example zn, n = 1, 2, . . . , given the previous examples z1, . . . , zn−1. In this
section we will discuss an assumption that we might be willing to make about
the examples, and in the next section the actual prediction algorithms.

An on-line compression model is a 5-tuple M = (Σ, ¤,Z, (Fn), (Bn)),
where:

1. Σ is a measurable space called the summary space; its elements are
called summaries ; ¤ ∈ Σ is a summary called the empty summary ;
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2. Z (the example space) is a measurable space from which the examples
zi are drawn;

3. Fn, n = 1, 2, . . . , are functions of the type Σ × Z → Σ called forward
functions ;

4. Bn, n = 1, 2, . . . , are kernels of the type Σ → Σ × Z called backward
kernels ; in other words, each Bn is a function Bn(A |σ) which depends
on σ ∈ Σ and a measurable set A ⊆ Σ× Z such that

• for each σ, Bn(A |σ) as a function of A is a probability distribution
in Σ× Z;

• for each A, Bn(A |σ) is a measurable function of σ;

it is required that Bn be a reverse to Fn in the sense that

Bn

(
F−1

n (σ) |σ)
= 1

for each σ ∈ Fn(Σ× Z). We will sometimes write Bn(σ) for the prob-
ability distribution A 7→ Bn(A | σ).

Next we explain briefly the intuition behind this formal definition and intro-
duce some further notation.

An OCM is a way of summarizing statistical information. At the begin-
ning we do not have any information, which is represented by the empty sum-
mary σ0 := ¤. When the first example z1 arrives, we update our summary
to σ1 := F1(σ0, z1), etc.; when example zn arrives, we update the summary
to σn := Fn(σn−1, zn). This process is represented in Figure 1. Let tn be the
nth statistic in the OCM, which maps the sequence of the first n examples
z1, . . . , zn to σn:

t1(z1) := F1(σ0, z1);

tn(z1, . . . , zn) := Fn(tn−1(z1, . . . , zn−1), zn), n = 2, 3, . . . .

The value tn(z1, . . . , zn) is a summary of the full data sequence z1, . . . , zn

available at the end of trial n; our definition requires that the summaries
should be computable on-line: the function Fn updates σn−1 to σn.

Condition 3 in the definition of OCM reflects its on-line character, as
explained in the previous paragraph. We want, however, the system of sum-
marizing statistical information represented by the OCM to be efficient, so
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¤ σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

- - - - -
? ? ? ?

Figure 1: Using the forward functions Fn to compute σn from z1, . . . , zn

that no useful information is lost. This is reflected in Condition 4: the distri-
bution Bn of the more detailed description (σn−1, zn) given the less detailed
σn is known and so does not carry any information about the distribution
generating the examples z1, z2, . . . ; in other words, σn contains the same
useful information as (σn−1, zn), and the extra information in (σn−1, zn) is
noise. This intuition would be captured in statistical terminology (see, e.g.,
Cox and Hinkley 1974, §2.2) by saying that σn is a “sufficient statistic” of
z1, . . . , zn (although this expression does not have a formal meaning in our
present context, since we do not have a full statistical model {Pθ : θ ∈ Θ}).

Analogously to Figure 1, we can compute the distribution of the data
sequence z1, . . . , zn from σn (see Figure 2). Formally, using the kernels
Bn(dσn−1, dzn |σn), we can define the “conditional distribution” Pn of
z1, . . . , zn given σn by the formula

Pn(A1 × · · · × An |σn) :=∫
· · ·

∫
B1(A1 |σ1)B2(dσ1, A2 |σ2) . . .

Bn−1(dσn−2, An−1 |σn−1)Bn(dσn−1, An |σn) (1)

for each product set A1 × · · · × An, Ai ⊆ Z, i = 1, . . . , n. (We will use the
expression “conditional distribution” for Pn despite the fact that in general
it is not obtained from some other probability distribution by conditioning.)

We say that a probability distribution P in Z∞ agrees with the OCM
(Σ,¤,Z, (Fn), (Bn)) if, for each n, Bn(A |σ) is a version of the conditional
probability, w.r. to P , that (tn−1(z1, . . . , zn−1), zn) ∈ A given tn(z1, . . . , zn) =
σ and given the values of zn+1, zn+2, . . . .
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¤ σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

¾ ¾ ¾ ¾ ¾

6 6 6 6

Figure 2: Using the backward functions Bn to extract the distribution of
z1, . . . , zn from σn

3 Confidence transducers and the main re-

sult

A randomised transducer is a function f of the type (Z × [0, 1])∗ → [0, 1].
It is called “transducer” because it can be regarded as mapping each in-
put sequence (z1, θ1, z2, θ2, . . . ) in (Z× [0, 1])∞ (the examples zi are comple-
mented by random numbers θi) into the output sequence (p1, p2, . . . ) defined
by pn := f(z1, θ1, . . . , zn, θn), n = 1, 2, . . . ; we will say that p1, p2, . . . are
the p-values produced by the randomised transducer. We say that the ran-
domised transducer f is valid w.r. to an OCM M if the output p-values
p1p2 . . . are always distributed according to the uniform distribution U∞ in
[0, 1]∞, provided the input examples z1z2 . . . are generated by a probability
distribution that agrees with M and θ1θ2 . . . are generated, independently of
z1z2 . . . , from U∞. If we drop the dependence on the random numbers θn,
we obtain the notion of deterministic transducer.

Any sequence of measurable functions An : Σ × Z → R, n = 1, 2, . . . ,
is called an individual strangeness measure w.r. to the OCM M =
(Σ,¤,Z, (Fn), (Bn)). The confidence transducer associated with (An) is
the deterministic transducer where pn are defined as

pn := Bn ({(σ, z) ∈ Σ× Z : An(σ, z) ≥ An(σn−1, zn)} | σn) (2)

and
σn := tn(z1, . . . , zn), σn−1 := tn−1(z1, . . . , zn−1).
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The randomised version is obtained by replacing (2) with

pn := Bn ({(σ, z) ∈ Σ× Z : An(σ, z) > An(σn−1, zn)} | σn)

+ θnBn ({(σ, z) ∈ Σ× Z : An(σ, z) = An(σn−1, zn)} | σn) . (3)

A confidence transducer in an OCM M is a confidence transducer associated
with some individual strangeness measure w.r. to M .

Theorem 1 Suppose the examples zn ∈ Z, n = 1, 2, . . . , are generated from
a probability distribution P that agrees with an on-line compression model.
Any randomised confidence transducer in that model is valid (will produce
independent p-values pn distributed uniformly in [0, 1]).

Confidence transducers can be used for “prediction with confidence”.
Suppose each example zn consists of two components, xn (the object) and yn

(the label); at trial n we are given xn and the goal is to predict yn. Therefore,
Z = X×Y, where X is the object space and Y is the label space.

One mode of prediction with confidence is “region prediction” (as in Vovk
2002). Suppose we are given a significance level δ > 0 (the maximum prob-
ability of error we are prepared to tolerate). When given xn, we can output

as the prediction region Γ
(δ)
n ⊆ Y the set of labels y such that yn = y would

lead to a p-value pn > δ: e.g., in the randomised case,

Γ(δ)
n := {y ∈ Y : f(z1, θ1, . . . , zn−1, θn−1, (xn, y), θn) > δ} ,

where f is the randomised transducer being used and θ1, θ2, . . . are the ran-
dom numbers. When a confidence transducer is applied in this mode, it is
referred to as a Transductive Confidence Machine. If error at trial n is defined
as yn /∈ Γ

(δ)
n , then by Theorem 1 errors at different trials are independent and

the probability of error at each trial is δ, assuming the pn are produced by a
randomised confidence transducer. In particular, such region predictors are
well-calibrated, in the sense that the number En of errors made in the first n
trials satisfies

lim
n→∞

En

n
= δ.

This implies that if the pn are produced by a deterministic confidence trans-
ducer, we will still have the conservative version of this property,

lim
n→∞

En

n
≤ δ.
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An alternative way of presenting the confidence transducer’s output (used
in Vovk et al. 1999 and several other papers) is reporting, after seeing xn,

a predicted label ŷn ∈ arg maxy∈Y pn(y), the confidence 1 − p
(2)
n , and the

credibility p
(1)
n , where pn(y) is the p-value that would be obtained if yn = y,

p
(1)
n is the largest value among pn(y), and p

(2)
n is the second largest value

among pn(y).

4 Gaussian model

The only special case of OCM studied from the point of view of prediction
with confidence before this paper was the exchangeability model; this model,
together with its powerful generalization that we call the “hypergraphical
model”, will be discussed in §6. We start with two new models, Gaussian (this
section) and Markov (§5). Many more models are considered in (Bernardo
and Smith, 2000, Chapter 4). For defining specific OCM, we will specify their
statistics tn and conditional distributions Pn; these will uniquely identify Fn

and Bn.
In the Gaussian model, Z := R, the statistics are

tn(z1, . . . , zn) := (zn, Rn) , (4)

where

zn :=
1

n

n∑
i=1

zi, Rn :=
√

(z1 − zn)2 + · · ·+ (zn − zn)2,

and Pn(dz1, . . . , dzn |σ) is the uniform distribution in t−1
n (σ) (in other words,

for σ = (zn, Rn), it is the uniform distribution in the (n − 2)-dimensional
sphere in Rn with centre (zn, . . . , zn) ∈ Rn of radius Rn lying inside the
hyperplane 1

n
(z1 + · · ·+ zn) = zn).

It is clear that there are many possible representations of essentially the
same model; for example, we obtain an equivalent model if we replace (4) by

tn(z1, . . . , zn) :=

(
n∑

i=1

zi,

n∑
i=1

z2
i

)
. (5)

Let us give an explicit expression of the prediction region for the Gaussian
model and individual strangeness measure

An(σn−1, zn) = An((zn−1, Rn−1), zn) := |zn − zn−1| (6)
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(it is easy to see that this individual strangeness measure is equivalent, in the
sense of leading to the same p-values, to |zn− zn|, as well as to several other
natural expressions, including (7)). Under Pn(dz1, . . . , dzn |σ) and assuming
n > 2, the expression

√
(n− 1)(n− 2)

n

zn − zn−1

Rn−1

(7)

has Student’s t-distribution with n−2 degrees of freedom. (This fact is proven
in, e.g., Cramér 1946, §29.4, where it is assumed, however, that z1, . . . , zn are
independent and have the same Gaussian distribution. The latter assump-
tion is easy to replace by our assumption of the uniform distribution; for a
general argument, see the proof of Proposition 1 below.) Let tε,k be the value
defined by P{τ > tε,k} = ε, where τ has Student’s t-distribution with k de-
grees of freedom. The prediction region (or prediction interval, in this case)
corresponding to the individual strangeness measure (6) and a significance
level δ is the set of z satisfying

|z − zn−1| ≤ tδ/2,n−2

√
n

(n− 1)(n− 2)
Rn−1. (8)

Therefore, we obtained the usual prediction regions based on the t-test (as in
Baker 1935, Wilks 1941, and, implicitly, Fisher 1925); now, however, we can
see that the errors of this standard procedure (applied in the on-line fashion)
are independent.

Gauss linear model

We will now consider a rich extension of the Gaussian model. In the Gauss
linear model, the example space is of the “regression type”, Z := X×Y with
the label space being the real line, Y := R, and the object space being the
p-dimensional Euclidean space, X := Rp. The statistics are

tn(x1, y1, . . . , xn, yn) :=

(
x1, . . . , xn,

n∑
i=1

yixi,

n∑
i=1

y2
i

)
(9)

(so Σ can be set to X∗×Rp×R), and each conditional distribution Pn(· | σ)
is the uniform probability distribution in the sphere t−1

n (σ) (we consider a
point to be a sphere; typically t−1

n (σn) will be a point unless n > p).
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The Gaussian model in the form (5) is a special case (using, however,
a different notation, zi for yi) corresponding to p = 1 and xn restricted
to xn = 1, n = 1, 2, . . . . Using

∑n
i=1 yixi rather than

∑n
i=1 yi reflects the

possibility that yi can depend on xi.
It is clear that the probability distribution for z1, z2, . . . in the linear

regression statistical model

yn = w · xn + ξn, (10)

where w ∈ Rp is a constant vector and ξn are independent variables with
the same zero-mean Gaussian distribution N (0, σ2), always agrees with the
Gauss linear model. The name “Gauss linear model” was suggested (in a
similar context) by Seal (1967).

Our next proposition will use the following notation: ŷn
i is the least-

squares prediction for the object xi based on the examples z1, . . . , zn; ŷn is a
shorthand for ŷn−1

n ; Xl, l = 1, 2, . . . , is the l × p matrix whose ith row is x′i
(i.e., xi transposed), i = 1, . . . , l; and

σ̂2
l :=

1

l − p

l∑
i=1

(yi − ŷl
i)

2

is the standard estimate of σ2 from the first l examples.

Proposition 1 The prediction region based on the nonconformity measure
An := |yn − ŷn| is given, for n > p + 1 satisfying rank(Xn−1) = p, by the
formula

Γ(δ)
n =

[
ŷn − tδ/2,n−p−1Vn, ŷn + tδ/2,n−p−1Vn

]
, (11)

where

Vn :=
√

σ̂2
n−1(1 + x′n(X ′

n−1Xn−1)−1xn).

Proof It is a standard fact (see, e.g., Stuart et al. 1999, §32.10) that
(yn − ŷn)/Vn has the t-distribution with n − p − 1 degrees of freedom; this
assumes, however, the standard model (10) rather than the uniform condi-
tional distribution of the Gauss linear model. Let us check that (yn− ŷn)/Vn

will still have the t-distribution with n− p− 1 degrees of freedom under the
uniform conditional distribution.

First note that (yn−ŷn)/Vn can be rewritten so that it only depends on the
n-residuals yi − ŷn

i (i.e., residuals computed from all n examples z1, . . . , zn).
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Indeed, a standard statistical result (Montgomery et al., 2001, (4.12)) shows
that

σ̂2
n−1 =

∑n
i=1(yi − ŷn

i )2 − (yn − ŷn
n)2/(1− x′n(X ′

nXn)−1xn)

n− p− 1
; (12)

another standard result (Montgomery et al., 2001, (4.11)) shows that

yn − ŷn =
yn − ŷn

n

1− x′n(X ′
nXn)−1xn

. (13)

Let Yn := (y1, . . . , yn)′ be the vector of the first n labels and Ŷn :=
(ŷ1, . . . , ŷn)′ be the vector of the first n least-squares predictions. According
to the geometric interpretation of the least squares method in the standard
model (10) (see, e.g., Draper and Smith 1998, Chapters 20–21), the vector of
n-residuals is distributed symmetrically around Ŷn in the space orthogonal to
the estimation space {Xnw : w ∈ Rp}. On the other hand, according to (9)
and the definition of Pn, Pn(· | σn) is the uniform distribution on the sphere,
of radius equal to the length of the vector of n-residuals, in the hyperplane
orthogonal to the estimation space and passing through the projection Ŷn

of Yn onto the estimation space. Since the ratio (yn − ŷn)/Vn (expressed
through the n-residuals yi − ŷn

i ) does not change if all n-residuals are multi-
plied by the same positive constant (and, therefore, its distribution does not
change if the random vector of n-residuals is scaled to have a given length),
we may replace the Gaussian distribution of (10) by our uniform distribution
Pn(· | σn).

The proof will be complete if we show that∣∣∣∣
yn − ŷn

Vn

∣∣∣∣ =
|yn − ŷn|

Vn

is a bona fide individual strangeness measure which monotonically increases
as |yn − ŷn| increases for any fixed σn := tn(z1, . . . , zn). This is simple:
standard statistical formulas show that |yn − ŷn|/Vn is expressible through
tn−1(x1, y1, . . . , xn−1, yn−1) and zn = (xn, yn), and, from (12) and (13),

|yn − ŷn|
Vn

↑↑ |yn − ŷn
n|√

C − c(yn − ŷn
n)2

↑↑ (yn − ŷn
n)2

C − c(yn − ŷn
n)2

↑↓ C − c(yn − ŷn
n)2

(yn − ŷn
n)2

↑↑ 1

(yn − ŷn
n)2

↑↓ |yn − ŷn
n| ↑↑ |yn − ŷn|,

where C > 0 and c are constants (for a fixed σn), ↑↑ means “changes in the
same direction”, and ↑↓ means “changes in the opposite direction”.
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It is easy to check that Proposition 1 contains (8) as a special case.
The prediction interval (11) is standard (see, e.g., Montgomery et al.

2001, (3.54)), but Theorem 1 adds the usual extra feature: the independence
of errors in the on-line setting.

Remark The methods of this subsection are applicable to time series, al-
though only to the simplest ones: e.g., if

yn = f(n) + cos
n− a

T
+ ξn

where f(n) is a polynomial of a known order p, T is a known constant (the
period of the seasonal component) and ξn are independent and identically
distributed zero-mean Gaussian random variables, we can set

xn :=
(
1, n, . . . , np, cos

n

T
, sin

n

T

)

and use formula (11). Constructing good TCM in more interesting cases
would require new methods.

5 Markov model

In this section we assume that the example space Z is finite. The following
notation for digraphs will be used: in(v) (resp. out(v)) stands for the number
of arcs entering (resp. leaving) vertex v; nu,v is the number of arcs leading
from vertex u to vertex v.

The Markov summary of a data sequence z1 . . . zn is the following digraph
with two vertices marked:

• the set of vertices is Z;

• the vertex z1 is marked as the source and the vertex zn is marked as
the sink (these two vertices are not necessarily distinct);

• the arcs of the digraph are the transitions zizi+1, i = 1, . . . , n− 1; the
arc zizi+1 has zi as its tail and zi+1 as its head.

It is clear that in any such digraph all vertices v satisfy in(v) = out(v) with
the possible exception of the source and sink (unless they coincide), for which
we then have out(source) = in(source) + 1 and in(sink) = out(sink) + 1. We
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will call a digraph with this property a Markov graph if the arcs with the
same tail and head are indistinguishable (for example, we do not distinguish
two Eulerian paths that only differ in the order in which two such arcs are
passed); its underlying digraph will have the same structure but all its arcs
will be considered to have their own identity. Markov summaries will always
be regarded as Markov graphs.

The Markov model is the OCM with the nth statistic σn = tn(z1, . . . , zn)
equal to the Markov summary of z1, . . . , zn and the conditional probability
distribution Pn(· | σn) being the uniform distribution over the Eulerian paths
in the Markov graph σn (with each Eulerian path represented by the sequence
of vertices along it).

This is the explicit definition of the Markov model as an OCM
(Σ,¤,Z, F, B):

• Z is a finite set; its elements (examples) are also called states ;

• Σ \ {¤} is the set of all Markov graphs with the vertex set Z;

• ¤ is, e.g., the empty set;

• Fn(σ, z), n = 2, 3, . . . , is the Markov graph obtained from σ by adding
an arc from σ’s sink to z and making z the new sink; F1(¤, z) is the
Markov graph with no arcs and with both source and sink at z;

• let σ ↓ z, where σ is a Markov graph and z is one of σ’s vertices, be
the Markov graph obtained from σ by removing an arc from z to σ’s
sink (σ ↓ z does not exist if there is no arc from z to σ’s sink) and
moving the sink to z, and let N(σ) be the number of Eulerian paths
from the source to the sink in a Markov graph σ; Bn(σ) is (σ ↓ z, sink)
with probability N(σ ↓ z)/N(σ), where sink is σ’s sink and z ranges
over the states for which σ ↓ z is defined.

Notice that any Markov probability distribution in Z∞ (i.e., a probability
distribution P such that, for some function g : Z2 → [0, 1], the conditional
probability that zn = z given z1, . . . , zn−1 always equals g(zn−1, z)) agrees
with the Markov model.

We will take as the individual strangeness measure

An(σ, z) := −Bn ({(σ, z)} |Fn(σ, z)) (14)
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(we need the minus sign because lower probability makes an example
stranger). To give a computationally efficient representation of the con-
fidence transducer corresponding to this individual strangeness measure, we
need the following two graph-theoretic results, versions of the BEST theorem
and the Matrix-Tree theorem, respectively.

Lemma 1 In any Markov graph σ = (V, E) the number of Eulerian paths
from the source to the sink equals

T (σ)
out(sink)

∏
v∈V (out(v)− 1)!∏

u,v∈V nu,v!
,

where T (σ) is the number of spanning out-trees in the underlying digraph
rooted at the source.

Lemma 2 To find the number T (σ) of spanning out-trees rooted at the source
in the underlying digraph of a Markov graph σ with vertices z1, . . . , zn (z1

being the source),

• create the n× n matrix with the elements ai,j = −nzi,zj
;

• change the diagonal elements so that each column sums to 0;

• compute the co-factor of a1,1.

These two lemmas immediately follow from Theorems VI.24 and VI.28 in
(Tutte, 2001).

It is now easy to obtain an explicit formula for prediction in the binary
case Z = {0, 1}. First we notice that, for n > 1,

Bn({(σ ↓ z, sink)} | σ) =
N(σ ↓ z)

N(σ)
=

T (σ ↓ z)nz,sink

T (σ) out(sink)

(all nu,v refer to the numbers of arcs in σ and sink is σ’s sink; we set N(σ ↓
z) = T (σ ↓ z) := 0 when σ ↓ z does not exist). The following simple corollary
from the last formula is sufficient for computing the probabilities Bn in the
binary case:

Bn({(σ ↓ sink, sink)} | σ) =
nsink,sink

out(sink)
.

This gives us the following formulas for the TCM in the binary Markov
model (remember that the individual strangeness measure is (14)). Suppose
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the current summary is given by a Markov graph with ni,j arcs going from
vertex i to vertex j (i, j ∈ {0, 1}) and let f : [0, 1] → [0, 1] be the function
that squashes [0.5, 1] to 1:

f(p) :=

{
p if p < 0.5
1 otherwise.

If the current sink is 0, the p-value corresponding to the next example 0 is

f

(
n0,0 + 1

n0,0 + n0,1 + 1

)

and the p-value corresponding to the next example 1 is (with 0/0 := 1)

f

(
n1,0

n1,0 + n1,1

)
. (15)

If the current sink is 1, the p-value corresponding to the next example 1 is

f

(
n1,1 + 1

n1,1 + n1,0 + 1

)

and the p-value corresponding to the next example 0 is (with 0/0 := 1)

f

(
n0,1

n0,1 + n0,0

)
.

Figure 3 shows the result of a computer simulation; as expected, the error
line is close to the straight line with the slope close to the significance level.

6 Exchangeability and hypergraphical mod-

els

The exchangeability model has statistics

tn(z1, . . . , zn) := *z1, . . . , zn+;
given the value of the statistic, all orderings have the same probability 1/n!.
Formally, the set of bags *z1, . . . , zn+ of size n is defined as Zn equipped
with the σ-algebra of symmetric (i.e., invariant under permutations of com-
ponents) events; the distribution on the orderings is given by zπ(1), . . . , zπ(n),
where z1, . . . , zn is a fixed ordering and π is a random permutation (each
permutation is chosen with probability 1/n!).

The main results of (Vovk, 2002) and (Vovk et al., 2003) are special cases
of Theorem 1.
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Figure 3: TCM predicting the binary Markov chain with transition prob-
abilities P(1 | 0) = P(0 | 1) = 1% at significance level 2%; the cumulative
numbers of errors (prediction regions not covering the true label), uncertain
(i.e., containing more than one label) and empty prediction regions are shown

Hypergraphical structures

We now assume that the examples are structured, consisting of “variables”.
Formally, a hypergraphical structure is a triple (V, E , Ξ), where:

• V is a finite set whose elements will be called variables ;

• E is a family of V ’s subsets; elements of E are called clusters ; the union
of all clusters is required to be the whole of V ;

• Ξ is a function that maps each variable v ∈ V into the finite set Ξ(v) of
the “values that v can take”; Ξ(v) is called the frame of v; to exclude
trivial cases, we always assume ∀v : |Ξ(v)| > 1.

In applications one (or more) of the variables is marked as the label, but
this will not be used in our considerations. A configuration on a cluster (or,
more generally, V ’s subset) E is an assignment of an element of Ξ(v) to each
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v ∈ E. An example is a configuration on V ; we take Z to be the set of all
examples.

A table on a cluster E is an assignment of a non-negative number to each
configuration on E. We will mainly be interested in natural tables, which
assign only natural (i.e., non-negative integer) numbers to configurations.
(These are known as “contingency tables” in statistics.) The size of the
table is the sum of values that it assigns to different configurations. A table
set assigns to each cluster a table on that cluster. We will only be interested
in table sets all of whose tables have the same size, which is then called the
size of the table set. The number assigned by a table set σ to a configuration
of a cluster E will sometimes be called the σ-count of that configuration.

Hypergraphical models

Now we are ready to define the OCM associated with a hypergraphical struc-
ture (V, E , Ξ); as usual, the most intuitive definition is in terms of statistics
tn and conditional distributions Pn. The table set tn(z1, . . . , zn) generated
by a data sequence z1, . . . , zn assigns to each configuration the number of
examples among z1, . . . , zn that agree with that configuration (we say that
an example z agrees with a configuration on a cluster E if that configuration
coincides with the restriction z|E of z to E). The number of data sequences
generating a table set σ will be denoted N(σ) (for N(σ) to be non-zero
the size of σ must exist, and then the length of each sequence generating σ
will be equal to its size). The table sets σ with N(σ) > 0 (called consis-
tent table sets) are called summaries ; they form the summary space Σ of
the hypergraphical on-line compression model associated with (V, E , Ξ). The
conditional probability distribution Pn(· | σ), where n is the size of σ, is the
uniform distribution in the set of all data sequences z1, . . . , zn that generate
σ.

The explicit definition of the hypergraphical model (Σ,¤,Z, F, B) is as
follows:

• Σ is the set of all summaries (i.e., consistent table sets); ¤ is the empty
table set, i.e., the one of size 0;

• Z is the set of all examples (i.e., configurations on V );

• the table set F (σ, z) is obtained from σ by adding 1 to the σ-count of
each configuration consistent with z;

15



• an example z is consistent with a summary σ if the σ count of each
configuration that agrees with z is positive; if so, we define σ ↓ z from
σ by subtracting 1 from the σ-count of any configuration that agrees
with z; Bn(σ), where n is the size of σ, is defined by

B({(σ ↓ z, z)} | σ) :=
N(σ ↓ z)

N(σ)
.

Among the probability distributions P that agree with the hypergraphical
model with structure (V, E , Ξ) are power distributions p∞ such that each p
(a probability distribution in Z) decomposes into

p {z : z(v) = a(v),∀v ∈ V } =
∏
E∈E

fE(z|E), (16)

where a is any configuration on V , f is a fixed table set, and z|E is, as usual,
the restriction of z to E.

The exchangeability model with the example space Z corresponds to the
hypergraphical model with only one cluster, E = {V }.

Junction-tree models

An important special case is where we can arrange the clusters of a hyper-
graphical structure into a “junction tree”. We will be able to give relatively
efficient prediction algorithms only for such junction-tree structures. Fortu-
nately, modelling with junction-tree structures is a well-developed field; for
example, the standard way of dealing with Bayesian networks is to transform
them into junction-tree structures (see, e.g., Jensen 1996).

Formally, a junction tree for a hypergraphical structure (V, E , Ξ) is an
undirected tree (U, S) (with U the set of vertices and S the set of edges)
together with a bijective mapping C from the vertices U of the tree to the
clusters E of the hypergraphical structure which satisfies the following prop-
erty: if a vertex v lies on the path from a vertex u to a vertex w in the tree
(U, S), then

Cu ∩ Cw ⊆ Cv

(we let Cx stand for C(x)). The tree (U, S) will also sometimes be called the
junction tree (when the bijection is clear from the context). It is convenient
to identify vertices v of the junction tree with the corresponding clusters Cv
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in E . If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u
and v, we will write Cs for Cu ∩ Cv; Cs will be called the separator between
Cu and Cv.

We will say “junction-tree structures/models” to mean hypergraphical
structures/models in which the clusters are arranged into a junction tree.

It is easy to characterize consistent table sets in junction-tree structures.
If E1 ⊆ E2 ⊆ V and f is a table set on E2, its marginalisation to E1 is
the table f ∗ on E1 such that f ∗(a) =

∑
b f(b) for all configurations a on E1,

where b ranges over all configurations on E2 consistent with a (i.e., such that
b|E1 = a).

Lemma 3 Let (V, E , Ξ) be a junction-tree structure. A natural table set σ
on (V, E , Ξ) is consistent if and only if the following two conditions hold:

• each table in σ is of the same size;

• if clusters E1, E2 ∈ E intersect, the marginalisations of their tables to
E1 ∩ E2 coincide.

This lemma is obvious; it, however, ceases to be true if the assumption that
(V, E , Ξ) is a junction-tree structure is dropped. (Indeed, suppose V consists
of three binary variables A,B,C, E consists of the clusters AB, AC, and BC,
and consider the table set assigning 1 to the configurations A = 0 & B = 0,
A = 1&B = 1, A = 0&C = 0, A = 1&C = 1, B = 0&C = 0, B = 1&C = 1,
and assigning 0 to all other configurations. The two conditions hold but the
table is not consistent.)

If σ is a summary and E is a cluster, we let σE stand for the table that
σ assigns to E. If E is a separator, say E = C{u,v}, σE stands for the
marginalisation of σCu (equivalently, by Lemma 3, of σCv) to E.

The factorial-product of a cluster or separator E in a summary σ is, by
definition,

fpσ(E) :=
∏

a∈conf(E)

σE(a)!,

where conf(E) is the set of all configurations on E.

Lemma 4 Consider a summary σ of size n on a junction-tree structure.
The number of data sequences of length n compatible with the table set σ
equals

N(σ) =
n!

∏
s∈S fpσ(Cs)∏

u∈U fpσ(Cu)
. (17)
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Proof The proof is by induction in the size of the junction tree. If the
junction tree consists of only one vertex u, the formula (17) becomes

n!

fpσ(Cu)
=

n!∏
a∈conf(Cu) σCu(a)!

,

which is the correct multinomial coefficient.
Now let us assume that (17) is true for some tree and prove that it

remains true for that tree extended by adding an edge s and a vertex u.
(The example space for the new tree will be bigger.) We are required to
show that the number of data sequences consistent with σ is multiplied by

fpσ(Cs)

fpσ(Cu)
=

∏

a∈conf(Cs)

σCs(a)!∏
b∈comp(a) σCu(b)!

, (18)

where comp(a) is the set of all configurations on Cu compatible with a. It
remains to notice that the number of ways in which each sequence of n
examples in the old tree can be extended to a sequence of n examples in the
new tree is given by the right-hand side of (18).

Lemma 5 Given the summary σ of the first n examples, the Bn(σ)-
probability that zn = a equals

∏
u∈U σCu(a|Cu)

n
∏

s∈S σCs(a|Cs)
(19)

(this ratio is set to 0 if any of the factors in the numerator or denominator
is 0; in this case zn = a is incompatible with the summary σ).

Proof Letting fp′ stand for the factorial-product in the summary σ ↓ a, we
obtain for the probability of zn = a:

N(σ ↓ a)

N(σ)
=

(n− 1)!
∏

s∈S fp′σ(Cs)
∏

u∈U fpσ(Cu)∏
u∈U fp′σ(Cu)n!

∏
s∈S fpσ(Cs)

=

∏
u∈U σCu(a|Cu)

n
∏

s∈S σCs(a|Cs).

The reader may recognize (19) as the maximum likelihood estimate of p
under (16). This simple representation of Bn(σ) makes it possible to com-
pute p-values (which can then be used for prediction with confidence) using
Monte Carlo simulation. Another powerful technique that can be applied to
sampling from Bn(σ) is described in (Diaconis and Sturmfels, 1998).
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A Appendix: Proof of Theorem 1

We will use the notation EF for the conditional expectation w.r. to a σ-
algebra F ; if necessary, the underlying probability distribution will be given
as an upper index. Similarly, PF will stand for the conditional probability
w.r. to F . In this appendix we will use the following properties of conditional
expectation (see, e.g., Shiryaev 1996, §II.7.4):

A. If G and F are σ-algebras, G ⊆ F , ξ and η are bounded F -measurable
random variables, and η is G-measurable, EG(ξη) = η EG(ξ) a.s.

B. If G and F are σ-algebras, G ⊆ F , and ξ is a random variable,

EG(EF(ξ)) = EG(ξ) a.s.; in particular, E(EF(ξ)) = E(ξ).

Proof of the Theorem

This proof is a generalization of the proof of Theorem 1 in (Vovk, 2002), with
the same basic idea: to show that (p1, . . . , pN) is distributed as UN (it is easy
to get rid of the assumption of a fixed horizon N), we reverse the time. Let P
be the distribution generating the examples; it is assumed to agree with the
OCM. Imagine that the sample (z1, . . . , zN) is generated in two steps: first,
the summary σN is generated from some probability distribution (namely,
the image of the distribution P generating z1, z2, . . . under the mapping tN),
and then the sample (z1, . . . , zN) is chosen randomly from PN(· |σN). Already
the second step ensures that, conditionally on knowing σN (and, therefore,
unconditionally), the sequence (pN , . . . , p1) is distributed as UN . Indeed,
roughly speaking (i.e., ignoring borderline effects), pN will be the p-value
corresponding to the statistic AN and so distributed, at least approximately,
as U (see, e.g., Cox and Hinkley 1974, §3.2); when the pair (σN−1, zN) is
disclosed, the value pN will be settled; conditionally on knowing σN−1 and
zN , pN−1 will also be distributed as U , and so on.

We start the formal proof by defining the σ-algebra Gn, n = 0, 1, 2, . . . , as
the one on the sample space (Z× [0, 1])∞ generated by the random elements
σn, zn+1, θn+1, zn+2, θn+2, . . . . In particular, G0 (the most informative σ-
algebra) coincides with the original σ-algebra on (Z×[0, 1])∞; G0 ⊇ G1 ⊇ · · · .

Fix a randomised confidence transducer f ; it will usually be left implicit in
our notation. Let pn be the random variable f(z1, θ1, . . . , zn, θn) for each n =
1, 2, . . . ; P will refer to the probability distribution P × U∞ (over examples
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zn and random numbers θn) and E to the expectation w.r. to P. The proof
will be based on the following lemma.

Lemma 6 For any trial n and any δ ∈ [0, 1],

PGn {pn ≤ δ} = δ. (20)

Proof Let us fix a summary σn of the first n examples (z1, . . . , zn) ∈ Zn; we
will omit the condition “ |σn”. For every pair (σ̃, z̃) from F−1

n (σn) define

p+(σ̃, z̃) := Bn {(σ, z) : An(σ, z) ≥ An(σ̃, z̃)} ,

p−(σ̃, z̃) := Bn {(σ, z) : An(σ, z) > An(σ̃, z̃)} .

It is clear that always p− ≤ p+. Notice that the semi-closed intervals
[p−(σ̃, z̃), p+(σ̃, z̃)), (σ̃, z̃) ∈ F−1

n (σn), either coincide or are disjoint; it is
also easy to see that they “lie next to each other”, in the sense that their
union is also a semi-closed interval (namely, [0, 1)).

Let us say that a pair (σ̃, z̃) is

• strange if p+(σ̃, z̃) ≤ δ

• ordinary if p−(σ̃, z̃) > δ

• borderline if p−(σ̃, z̃) ≤ δ < p+(σ̃, z̃).

We will use the notation p− := p−(σ̃, z̃) and p+ := p+(σ̃, z̃) where (σ̃, z̃) is
any borderline example. Notice that the Bn-measure of strange examples is
p−, the Bn-measure of ordinary examples is 1 − p+, and the Bn-measure of
borderline examples is p+ − p−.

By the definition of randomised confidence transducer, pn ≤ δ if the
pair (σn−1, zn) is strange, pn > δ if the pair is ordinary, and pn ≤ δ with
probability

δ − p−

p+ − p−

if the pair is borderline; indeed, in this case

pn = p− + θn(p+ − p−),

and so pn ≤ δ is equivalent to

θn ≤ δ − p−

p+ − p−
.
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Therefore, the overall probability that pn ≤ δ is

p− + (p+ − p−)
δ − p−

p+ − p−
= δ.

The other basic result that we will need is the following lemma.

Lemma 7 For any trial n = 1, 2, . . . , pn is Gn−1-measurable.

Proof This follows from the definition, (3): pn is defined in terms of σn−1,
zn and θn. The only technicality that might not be immediately obvious is
that the function

Bn({An > c} |σ)

of c ∈ R and σ ∈ Σ is measurable. Let C ∈ R. The set

{(c, σ) : Bn({An > c} |σ) > C} (21)

is measurable since it can be represented as

⋃

d∈Q
(0, d)× Σd,

where Q is the set of rational numbers and Σc is the set of σ satisfying the
inequality in (21).

Fix temporarily positive integer N . First we prove that, for any n =
1, . . . , N and any δ1, . . . , δn ∈ [0, 1],

PGn{pn ≤ δn, . . . , p1 ≤ δ1} = δn · · · δ1 a.s. (22)

The proof is by induction in n. For n = 1, (22) immediately follows from
Lemma 6. For n > 1 we obtain, making use of Lemmas 6 and 7, properties A
and B of conditional expectations, and the inductive assumption:

PGn{pn ≤ δn, . . . , p1 ≤ δ1}
= EGn

(
EGn−1

(
I{pn≤δn}I{pn−1≤δn−1,...,p1≤δ1}

))

= EGn

(
I{pn≤δn} EGn−1

(
I{pn−1≤δn−1,...,p1≤δ1}

))

= EGn

(
I{pn≤δn}δn−1 · · · δ1

)
= δnδn−1 · · · δ1

(IE being the indicator of event E) almost surely.
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By property B, (22) immediately implies

P {pN ≤ δN , . . . , p1 ≤ δ1} = δN · · · δ1.

Therefore, we have proved that the distribution of the random sequence
p1p2 · · · ∈ [0, 1]∞ coincides with U∞ on the σ-algebra FN generated by the
first N coordinate random variables p1, . . . , pN . It is well known (see, e.g.,
Shiryaev 1996, Theorem II.3.3) that this implies that the distribution of
p1p2 . . . coincides with U∞ on all measurable sets in [0, 1]∞.

B Appendix: Kolmogorov’s programme and

repetitive structures

In this section we briefly discuss Kolmogorov’s programme for applications
of probability and two related developments originated by Martin-Löf and
Freedman. In particular, we formally define a version of the notion of repet-
itive structure which is in a sense isomorphic to our notion of OCM.

Kolmogorov’s programme

The standard approach to modelling uncertainty is to choose a family of
probability distributions (statistical model) one of which is believed to be
the true distribution generating, or explaining in a satisfactory way, the data.
(In some applications of probability theory, the true distribution is assumed
to be known, and so the statistical model is a one-element set. In Bayesian
statistics, the statistical model is complemented by another element, a prior
distribution on the distributions in the model.) All modern applications of
probability depend on this scheme.

In 1965–1970 Kolmogorov suggested a different approach to modelling
uncertainty based on information theory; its purpose was to provide a more
direct link between the theory and applications of probability. His main idea
was that “practical conclusions of probability theory can be substantiated as
implications of hypotheses of limiting, under given constraints, complexity
of the phenomena under study” (Kolmogorov, 1983). The main features of
Kolmogorov’s programme can be described as follows:

C (Compression): One fixes a “sufficient statistic” for the data. This is
a function of the data that extracts, intuitively, all useful information
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from the data. This can be the number of ones in a binary sequence (the
“Bernoulli model” in Kolmogorov 1968; Martin-Löf 1966), the number
of ones after ones, ones after zeros, zeros after ones and zeros after zeros
in a binary sequence (the “Markov model” in Kolmogorov 1983), the
sample average and sample variance of a sequence of real numbers (the
“Gaussian model” in Asarin 1987, 1988).

A (Algorithmic): If the value of the sufficient statistic is known, the in-
formation left in the data is noise. This is formalized in terms of Kol-
mogorov complexity: the complexity of the data under the constraint
given by the value of the sufficient statistic should be maximal (in other
words, the data should be algorithmically random given the value of
the sufficient statistic).

U (Uniformity): Semantically, the requirement of algorithmic randomness
in the previous item means that the conditional distribution of the data
given the sufficient statistic is uniform.

D (Direct): It is preferable to deduce properties of data sets directly from
the assumption of limiting complexity, without a detour through stan-
dard statistical models (examples of such direct inferences are given
in Asarin 1987, 1988 and hinted at in Kolmogorov 1983), especially
that Kolmogorov’s models are not completely equivalent to standard
statistical models (Vovk, 1986).

Kolmogorov’s only two publications on his programme are (Kolmogorov,
1968, 1983); the work reported in (Martin-Löf, 1966; Vovk, 1986; Asarin,
1987, 1988) was done under his supervision by his PhD students.

After 1965 Kolmogorov and Martin-Löf worked on the information-
theoretic approach to probability applications independently of each other,
but arrived at similar concepts and definitions. Martin-Löf (1974) introduced
the notion of repetitive structure, later studied by Lauritzen (1988). Martin-
Löf’s theory of repetitive structures has features C and U of Kolmogorov’s
programme but not features A and D. An extra feature of repetitive struc-
tures is their on-line character : the conditional probability distributions are
required to be consistent and the sufficient statistic can usually be updated
recursively as new data arrives.

The absence of algorithmic complexity and randomness from Martin-Löf’s
theory does not look surprising; e.g., it is argued in (Vovk and Shafer, 2003)
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that these algorithmic notions are powerful sources of intuition, but for stat-
ing mathematical results in their strongest and most elegant form it is often
necessary to “translate” them into a non-algorithmic form.

A more important deviation from Kolmogorov’s ideas seems to be the
absence of “direct inferences”. The goal in the theory of repetitive struc-
tures is to derive standard statistical models from repetitive structures (in
the asymptotic on-line setting the difference between Kolmogorov-type and
standard models often disappears); to apply repetitive structures to reality
one still needs to go through statistical models. In our approach (see The-
orem 1 above or the optimality results in Vovk 2002,?) statistical models
become irrelevant; in principle, all results can be stated without them.

Freedman and Diaconis independently came up with ideas similar to Kol-
mogorov’s (Freedman’s first paper in this direction was published in 1962);
they were inspired by de Finetti’s theorem and the Krylov–Bogolyubov ap-
proach to ergodic theory.

Kolmogorov only considered the three main models (exchangeability,
Markov, Gaussian) that we discuss in §4–6, but many other models have
been considered by later authors (see, e.g., Bernardo and Smith 2000, Chap-
ter 4).

The difference between standard statistical modelling and Kolmogorov’s
modelling discussed in (Vovk, 1986) is not important for the purpose of one-
step-ahead forecasting in the exchangeable case (in particular, for both ex-
changeability and Gaussian models of this paper; see Nouretdinov et al.
2003); it becomes important, however, in the Markov case. The theory of
prediction with confidence has a dual goal: validity (there should not be too
many errors) and efficiency (there should not be too many uncertain predic-
tions, in the case of classification). In the asymmetric Markov case, although
we have the validity result (Theorem 1), there is little hope of obtaining an
optimality result analogous to those of (Vovk, 2002,?). A manifestation of the
difference between the two approaches to modelling is, e.g., the fact that (15)
involves the ratio n1,0/(n1,0+n1,1) rather than something like n0,1/(n0,0+n0,1).

Repetitive structures

Let Σ and Z be measurable spaces (of “summaries” and “examples”, respec-
tively). A repetitive structure contains the following two elements:

• a system of statistics (measurable functions) tn : Zn → Σ, n = 1, 2, . . . ;
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• a system of kernels Pn of the type Σ → Zn, n = 1, 2, . . . .

These two elements are required to satisfy the following consistency require-
ments:

Agreement between Pn and tn: for each σ ∈ tn(Zn), the probability dis-
tribution Pn(· | σ) is concentrated on the set t−1

n (σ);

Consistency of tn over n: for all integers n > 1, tn(z1, . . . , zn) is deter-
mined by tn−1(z1, . . . , zn−1) and zn, in the sense that the function tn is
measurable w.r. to the σ-algebra generated by tn−1 and zn.

Consistency of Pn over n: for all integers n > 1 and all σ ∈ tn(Zn),
Pn−1(· | τ) should be a version of the conditional distribution of
z1, . . . , zn−1 when z1, . . . , zn is generated from Pn(dz1, . . . , dzn |σ) and
it is known that tn−1(z1, . . . , zn−1) = τ and zn = z (τ ranging over
tn−1(Z

n−1) and z over Z).

The notions of OCM and repetitive structure are very close. If M =
(Σ,¤,Z, (Fn), (Bn)) is an OCM, then M ′ := (Z, Σ, (tn), (Pn)), as defined in
§2, is a repetitive structure. If M = (Z, Σ, (tn), (Pn)) is a repetitive structure,
an OCM M ′ := (Σ′,¤,Z, (Fn), (Bn)) can be defined as follows:

• ¤ is, say, the empty set; Σ′ := Σ ∪ {¤};
• Fn is a measurable function mapping tn−1(z1, . . . , zn−1) (interpreted as

¤ for n = 1) and zn to tn(z1, . . . , zn), for all (z1, . . . , zn) ∈ Zn (the
existence of such Fn follows from the consistency of tn over n);

• Bn(dσn−1, dzn |σn) is the image of the distribution Pn(dz1, . . . , dzn |σn)
under the mapping (z1, . . . , zn) 7→ (σn−1, zn), where σn−1 :=
tn−1(z1, . . . , zn−1).

If M is a repetitive structure, M ′′ is essentially the same as M , and if M is
an OCM, M ′′ is essentially the same as M (M and M ′′ can only differ on
irrelevant parts of Σ: e.g., in how Pn(σ) is defined for σ /∈ tn(Zn)).

In our examples (Gaussian, Markov, exchangeability models and their
modifications) we found it more convenient to start from the corresponding
repetitive structure (the statistics tn and conditional distributions Pn); the
conditions of consistency were obviously satisfied in those cases.
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