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Abstract

Conformal predictors are usually defined and studied under the exchangeabil-
ity assumption. However, their definition can be extended to a wide class of
statistical models, called online compression models, while retaining their prop-
erty of automatic validity. This paper is devoted to conformal prediction under
hypergraphical models that are more specific than the exchangeability model.
Namely, we define two natural classes of conformity measures for such hyper-
graphical models and study the corresponding conformal predictors empirically
on benchmark LED data sets. Our experiments show that they are more efficient
than conformal predictors that use only the exchangeability assumption.
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1 Introduction

The method of conformal prediction was introduced and is usually used for pro-
ducing valid prediction sets under the exchangeability assumption; the validity
of the method means that the probability of making a mistake is equal to (or
at least does not exceed) a prespecified significance level ([9], Chapter 2). How-
ever, the definition of conformal predictors can be easily extended to a wide class
of statistical models, called online compression models (OCMs; [9], Chapter 8).
OCMs compress data into a more or less compact summary, which is interpreted
as the useful information in the data. With each “conformity measure”, which,
intuitively, estimates how well a new piece of data fits the summary, one can
associate a conformal predictor, which still enjoys the property of automatic
validity. Numerous machine learning algorithms have been used for designing
efficient conformity measures (see, e.g., [9] and [2]), but this has been mostly
done only for the exchangeability assumption.

This paper studies conformal prediction under the OCMs known as hyper-
graphical models ([9], Section 9.2). Such models describe relationships between
data features. In the case where every feature is allowed to depend in any way
on the rest of the features, the hypergraphical model becomes the exchangeabil-
ity model. More specific hypergraphical models restrict the dependence in some
way. Such restrictions are typical in modelling many real-world problems: for
example, different symptoms might be assumed to be conditionally independent
given the disease. A popular approach to such problems is to use Bayesian net-
works (see, e.g., [3]). The definition of Bayesian networks requires a specification
of both the pattern of dependence between features and the distribution of the
features. Usual methods guarantee a valid probabilistic outcome if the used dis-
tributions of features are correct. Several algorithms (see, e.g., [3], Chapter 9)
are known for estimating the distribution of features; however, the accuracy of
such approximations is a major concern in applying Bayesian networks. The
conformal predictors constructed from hypergraphical OCMs use only the pat-
tern of dependence between the features but do not involve their distribution.
This makes conformal prediction based on hypergraphical models more robust
and realistic than Bayesian networks. (The notion of a hypergraphical model
can be regarded as more general than that of a Bayesian network: the standard
algorithms in this area transform Bayesian networks into hypergraphical mod-
els by “marrying parents”, forgetting the direction of the arrows, triangulation,
and regarding the cliques of the resulting graph as the hyperedges; see, e.g., [3],
Section 3.2.)

As far as we know, conformal prediction has been studied, apart from the
exchangeability model and its variations, only for the Gauss linear model and
Markov model (see [9], Chapter 8, and [5]). Hypergraphical OCMs have been
used only in the context of Venn rather than conformal prediction (see [9],
Chapter 9).

The rest of the paper is organised as follows. Section 2 formally defines
hypergraphical OCMs and briefly reviews their basic properties. Section 3
describes the method of conformal prediction in the context of hypergraphi-
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cal models and introduces two conformity measures for hypergraphical OCMs.
Section 4 reports the performance of the corresponding conformal predictors
on benchmark LED data sets. Section 5 describes the label conditional version
of conformal predictors for hypergraphical OCMs, and also empirically studies
class-wise validity and efficiency for these predictors. Section 6 concludes.

A weakness of using hypergraphical models different from the exchangeabil-
ity model is that, even though they are much weaker than the corresponding
Bayesian models, they still make much stronger assumptions about the data
than the exchangeability model; for this reason we only experiment with an ar-
tificial data set in this paper (Section 4), as it is difficult to find real-world data
sets for which even our assumptions would be completely realistic. However,
one of our empirical findings in Section 4 is that the efficiency of our predic-
tors does not suffer much when they are made valid under the exchangeability
model while still using narrower hypergraphical models in their design. (Unfor-
tunately, the situation changes if we insist on class-wise validity, as we will see
in Section 5.)

2 Background

Consider two measurable spaces X and Y; elements of X are called objects
and elements of Y are called labels. Elements of the Cartesian product Z :=
X×Y are called observations. A training sequence is a sequence of observations
(z1, . . . , zl), where each observation zi = (xi, yi) consists of an object xi and its
label yi. The general prediction problem considered in this paper is to predict
the label for a new object given a training sequence. We focus on the case where
X and Y are finite.

2.1 Hypergraphical structures

In this paper we assume that objects are structured, consisting of variables (rep-
resenting features). Hypergraphical structures describe relationships between
the variables. Formally a hypergraphical structure1 consists of three elements
(V, E ,Ξ):

1. V is a finite set; its elements are called variables.

2. E is a finite collection of subsets of V whose union covers all variables:⋃
E∈E E = V . Elements of E are called clusters.

3. Ξ is a function that maps each variable v ∈ V into a finite set (of the
values that v can take).

A configuration on a set E ⊆ V (we are usually interested in the case where E
is a cluster) is an assignment of values to the variables from E; let Ξ(E) be the

1The name reflects the fact that the components (V, E) form a hypergraph, where a hyper-
edge E ∈ E can connect more than two vertices.
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set of all configurations on E. A table2 on a set E is an assignment of natural
numbers or zero to the configurations on E. The size of the table is the sum of
values that it assigns to different configurations. A table set is a collection of
tables on the clusters E , one for each cluster E ∈ E . The number assigned by a
table set σ to a configuration on E is called its σ-count.

Intuitive examples of hypergraphical structures are given in Subsection 4.2
below.

2.2 Hypergraphical online compression models

The observation space Z associated with the hypergraphical structure is the set
of all configurations on V . One of the variables in V is singled out as the label
variable, and the configurations on the label variable are denoted Y. All other
variables are object variables, and the configurations on the object variables are
denoted X. Since Z = X × Y, this is a special case of the prediction setting
described in Subsection 2.1.

An observation z ∈ Z agrees with a configuration on a set E ⊆ V (or the con-
figuration agrees with the observation) if the restriction z|E of z to the variables
in E coincides with the configuration. A table set σ generated by a sequence of
observations (z1, . . . , zn) assigns to each configuration on each cluster the num-
ber of observations in the sequence that agree with the configuration; the size
of each table in σ will be equal to the number of observations in the sequence,
and this number is called the size of the table set. Different sequences of ob-
servations can generate the same table set σ, and we denote #σ the number
of different sequences generating σ. Whereas #σ > 0 implies that the size of
σ exists (i.e., all tables in σ have the same size), it is clear that the opposite
implication is false in general.

The hypergraphical online compression model (HOCM) associated with the
hypergraphical structure (V, E ,Ξ) consists of five elements (Σ,2,Z, F,B), where:

1. The empty table set 2 is the table set assigning 0 to each configuration.

2. The set Σ is defined by the conditions that 2 ∈ Σ and Σ\{2} is the set of
all table sets σ with #σ > 0. The elements σ ∈ Σ are called summaries.

3. The forward function F (σ, z), where σ ranges over Σ and z over Z, updates
σ by adding 1 to the σ-count of each configuration which agrees with z.

4. The backward kernel B maps each σ ∈ Σ\{2} to a probability distribution
B(σ) on Σ× Z assigning the weight #(σ ↓ z)/#σ to each pair (σ ↓ z, z),
where z is an observation such that, for all configurations which agree
with z, the corresponding σ-counts are positive, and σ ↓ z is the table
set obtained by subtracting 1 from the σ-counts of the configurations that
agree with z. Notice that B(σ) is indeed a probability distribution, and
it is concentrated on the pairs (σ ↓ z, z) such that F (σ ↓ z, z) = σ.

2Generally, a table assigns real numbers to configurations. In this paper we only consider
natural tables, which assign natural numbers or zero to configurations, and omit “natural” for
brevity.
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We will use “hypergraphical models” as a general term for hypergraphical struc-
tures and HOCMs when no precision is required. When discussing hypergraph-
ical models we will always assume that the observations z1, z2, . . . are produced
independently from a probability distribution Q on Z that has a decomposition

Q({z}) =
∏
E∈E

fE(z|E) (1)

for some functions fE : Ξ(E) → [0, 1], E ∈ E , where z is an observation and z|E
its restriction to the variables in E.

2.3 Junction tree structures

An important type of hypergraphical structures is where clusters can be ar-
ranged into a “junction tree”. For the corresponding HOCMs we will be able
to describe efficient calculations of the backward kernels. If one wants to use
the calculations for a structure that cannot be arranged into a junction tree it
can be replaced by a more general junction tree structure before defining the
HOCM.

Let (U, S) denote an undirected tree with U the set of vertices and S the set
of edges. Then (U, S) is a junction tree for a hypergraphical structure (V, E ,Ξ)
if there exists a bijective mapping C from the set of vertices U of the tree to the
set E of clusters of the hypergraphical structure that has the following property:
Cu ∩Cw ⊆ Cv whenever a vertex v lies on the path from a vertex u to a vertex
w in the tree (we let Cx stand for C(x)). Not every hypergraphical structure
admits a junction tree, of course: an example is a hypergraphical structure with
three clusters whose intersection is empty but whose pairwise intersections are
not. See, e.g., [3], Section 4.3, for further information on junction trees; intuitive
examples of junction trees will be given in Section 4.

If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u and v
then Cs stands for Cu∩Cv. It is convenient to identify vertices u and edges s of
the junction tree with the corresponding clusters Cu and sets Cs, respectively.

If E1 ⊆ E2 ⊆ V and f is a table on E2, the marginalisation of f to E1 is the
table f∗ on E1 assigning to each a ∈ Ξ(E1) the number f∗(a) =

∑
b f(b), where

b ranges over the configurations on E2 such that b|E1
= a. If σ is a summary

then for u ∈ U denote σu the table that σ assigns to Cu, and for s = {u, v} ∈ S
denote σs the marginalisation of σu (or σv) to Cs. We will use the shorthand
σu(z) for the number assigned to the restriction z|Cu by the table for the vertex
u and σs(z) for the number assigned to z|Cs by the marginal table for the edge
s:

σu(z) := σ (z|Cu
) , σs(z) := σ (z|Cs

) .

Consider the HOCM corresponding to the junction tree (U, S). We use the
notation Pσ(z) for the weight assigned by B(σ) to (σ ↓ z, z). It has been proved
([9], Lemma 9.5) that

Pσ(z) =

∏
u∈U σu(z)

n
∏

s∈S σs(z)
, (2)
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where n is the size of σ. If any of the factors in (2) is zero then the whole ratio
is set to zero.

3 Conformal prediction for HOCM

Consider a training sequence (z1, . . . , zl) and an HOCM (Σ,2,Z, F,B). The
goal is to predict the label for a new object x.

A conformity measure for the HOCM is a measurable function A : Σ×Z →
R. The function assigns a conformity score A (σ, z) to an observation z w.r. to
a summary σ. Intuitively, the score reflects how typical it is to observe z after
observing data summarized by σ.

For each y ∈ Y denote σ∗ ∈ Σ the table set generated by the sequence
(z1, . . . , zl, (x, y)) (the dependence of σ

∗ on y is important although not reflected
in our notation). For z ∈ Z such that σ∗ ↓ z is defined denote the conformity
scores as

αz := A (σ∗ ↓ z, z) (3)

(notice that α(x,y) is always defined). The p-value for y, denoted p(y), is defined
by

p(y) :=
∑

z:αz<α(x,y)

Pσ∗(z) + θ
∑

z:αz=α(x,y)

Pσ∗(z) (4)

(cf. (8.4) in [9]), where θ ∼ U[0, 1] is a random number drawn from the uni-
form distribution on [0, 1], Pσ∗(z) is the backward kernel, as defined above, and
the sums involve only those z ∈ Z for which αz is defined. Then for a signifi-
cance level ϵ the hypergraphical conformal predictor Γ based on A outputs the
prediction set

Γϵ(z1, . . . , zl, x) := {y ∈ Y : p(y) > ϵ}. (5)

(Such randomized conformal predictors were referred to as “smoothed” in [9].)
We will describe two conformity measures for HOCMs in Subsection 3.1.

These conformity measures optimise different criteria for the quality of confor-
mal predictors. Subsection 3.3 will describe the criteria used in this paper.

The reader who is looking for an accessible and detailed description of con-
formal prediction can consult [7] (whose Section 2 gives a very simple example,
albeit for a different, much simpler, online compression model).

3.1 Conformity measures for HOCM

Consider a summary σ and an observation (x, y). The conditional probability
conformity measure is defined by

A(σ, (x, y)) := Pσ∗(y | x) := Pσ∗ ((x, y))∑
y′∈Y Pσ∗ ((x, y′))

, (6)

where σ∗ := F (σ, (x, y)) and Pσ∗ ((x, y)) is the backward kernel. In other words,
A(σ, (x, y)) is the conditional probability Pσ∗(y | x) of y given x under Pσ∗ . The
conditional probability Pσ∗(y | x) can be easily computed using (2).
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Define the predictability of an object x ∈ X as

f(x) := max
y∈Y

Pσ∗(y | x), (7)

the maximum of conditional probabilities. If the predictability of an object
is close to 1 then the object is “easily predictable”. Fix a choice function
ŷ : X → Y such that

∀x ∈ X : f(x) = Pσ∗(ŷ(x) | x).

This function maps each object x to one of the labels at which the maximum
in (7) is attained. The signed predictability conformity measure is defined by

A(σ, (x, y)) :=

{
f(x) if y = ŷ(x)

−f(x) otherwise.
(8)

3.2 Computational efficiency of conformal prediction for
HOCM

In this paper we study the performance of conformal predictors in the online
prediction protocol (Protocol 1). The prediction sets output by Predictor are
computed using a conformal predictor Γ: Γϵ

n := Γϵ(x1, y1, . . . , xn−1, yn−1, xn)
for some ϵ ∈ (0, 1) (or for a finite range of ϵ). In this section we will discuss the
computational efficiency of Γ in this protocol.

Protocol 1 Online prediction protocol

for n = 1, 2, . . .
Reality outputs xn ∈ X
Predictor outputs Γϵ

n ⊆ Y for ϵ ∈ (0, 1)
Reality outputs yn ∈ Y

Let us assume that the HOCM (Σ,2,Z, F,B) and the finite range of ϵ are
fixed (for concreteness, the reader can think of the first example of Subsec-
tion 4.2). We will see that in this case the computations at each step of the
online prediction protocol can be carried out in constant time, O(1), for both
the conditional probability conformity measure (6) and the signed predictability
conformity measure (8); it will be clear that this is true for a very wide range
of conformity measures.

Indeed, let σn be the summary of the first n observations z1, . . . , zn. Accord-
ing to item (3) of the definition of HOCMs, updating σn (i.e., computing σn from
σn−1 and zn when n > 0) can be done in constant time. Given σn−1, xn, and a
postulated label y (of which there are a fixed finite number), we can compute the
probability measure Pσ∗ defined by (2) for the summary σ∗ := F (σn−1, (xn, y))
in constant time. All conformity scores (6) and (8) can now be computed in
constant time. Finally, the p-values (4) and prediction set (5) can be computed
in constant time.
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3.3 Criteria for the quality of conformal prediction

Remember that we are working in the online prediction protocol, given as Pro-
tocol 1. Reality generates observations (xn, yn) from a probability distribution
Q satisfying (1) for some hypergraphical structure. Predictor uses a conformal
predictor Γ to output the prediction set Γϵ

n := Γϵ(x1, y1, . . . , xn−1, yn−1, xn) at
each significance level ϵ. (We are no longer interested in the computational ef-
ficiency, so we imagine that Predictor outputs Γϵ

n for all ϵ ∈ (0, 1); in practice,
we can use either a finite range of ϵ or values such as unconfn below which do
not depend on ϵ and are efficiently computable.)

Two important properties of conformal predictors are their validity and effi-
ciency; the first is achieved automatically and the second is enjoyed by different
conformal predictors to a different degree. Predictor makes an error at step n if
yn is not in Γϵ

n. The validity of conformal predictors means that, for any signif-
icance level ϵ, the probability of error yn /∈ Γϵ

n is equal to ϵ. It has been proved
that conformal predictors are automatically valid under their models ([9], Theo-
rem 8.1). In this paper we study problems where the hypergraphical model used
for computing the p-values is known to be correct; therefore, the predictions will
always be valid, and there is no need to test validity experimentally.

The efficiency of valid predictions can be measured in different ways. The
standard way is to count the number of multiple predictions Multϵn over the first
n steps defined by

multϵn :=

{
1 if |Γϵ

n| > 1

0 otherwise
and Multϵn :=

n∑
i=1

multϵi

at each significance level ϵ ∈ (0, 1) (cf. [9], Chapter 3). Another way is to report
the cumulative observed excess of prediction sets

OEϵ
n :=

n∑
i=1

|Γϵ
i \ {yi}| (9)

at each significance level ϵ ∈ (0, 1). (The observed excess of a prediction is the
number of false labels included in the prediction set.) We will also consider
two ways to measure the efficiency of conformal predictors that do not depend

on the significance level. Let p
(y)
n , y ∈ Y, be the p-values (4) used by the

conformal predictor for computing the prediction set Γϵ
n at the nth step of the

online prediction protocol. The cumulative unconfidence Unconfn over the first
n steps is defined by

unconfn := inf {ϵ : |Γϵ
n| ≤ 1} and Unconfn :=

n∑
i=1

unconfi;

the unconfidence unconfn at step n can be equivalently defined as the second

largest p-value among p
(y)
n , y ∈ Y. (Unconfidence is a trivial modification of

7



the standard notion of confidence: see [9], (3.66).) Finally, the efficiency can be
measured by the cumulative observed fuzziness

OFn :=

n∑
i=1

∑
y∈Y:y ̸=yi

p
(y)
i . (10)

(The observed fuzziness at step n is the sum of the p-values apart from that
for the true label.) All four criteria work in the same direction: the smaller the
better. As already mentioned, the number of multiple predictions is a standard
criterion; the three other criteria are first used in this paper, in our other recent
paper [8], and in Johansson et al.’s [6] (we learned about the last paper only
after the conference version [4] of this paper had been published).

In our experiments we will use the following more intuitive versions of the
first two criteria: the percentage of multiple predictions Multϵn/n and the average
observed excess of predictions OEϵ

n/n; we would like them to be close to 0 for
small significance levels.

3.4 Conformity measures and criteria of efficiency

It can be shown that, in a wide range of situations:

� the signed predictability conformity measure is optimal in the sense of
Multϵn and in the sense of Unconfn;

� the conditional probability conformity measure is optimal in the sense of
OEϵ

n and in the sense of OFn.

These statements are formalized in an asymptotic setting and proved in [8], but
only in the case of the exchangeability model. However, in this subsection we
will see that this observation extends to any hypergraphical models admitting
a junction tree.

Intuitively, the asymptotic setting of [8] corresponds to the limiting case of
infinitely long training and test sequences. This is formalized by assuming that
the prediction algorithm is directly given the data-generating probability distri-
bution Q on Z instead of being given training and test sequences. Conformity
measures are replaced by idealized conformity measures: functions A(Q, z) of
Q ∈ P(Z) and z ∈ Z (where P(Z) is the set of all probability measures on
Z). The idealized conformal predictor corresponding to A outputs the following
prediction set Γϵ(x) for each object x ∈ X and each significance level ϵ ∈ (0, 1).
For each potential label y ∈ Y for x define the corresponding p-value as

py = p(x, y) := Q{z ∈ Z | A(z) < A((x, y))}+ θQ{z ∈ Z | A(z) = A((x, y))},
(11)

where θ ∼ U[0, 1]; the prediction set is

Γϵ(x) := {y ∈ Y | p(x, y) > ϵ} . (12)

8



Equations (11) and (12) are the idealized versions of (4) and (5), respectively.
We can also define the idealized version

A(Q, (x, y)) := Q(y | x) := Q ({(x, y)})
Q ({x} ×Y)

of the conditional probability conformity measure (6) and the idealized version

A(Q, (x, y)) :=

{
f(x) if y = ŷ(x)

−f(x) otherwise.

of the signed predictability conformity measure (8), where (7) is redefined as

f(x) := max
y∈Y

Q(y | x).

Finally, we can define idealized version of the criteria of efficiency; we will
do so only for the criteria (9) and (10). Let us write Γϵ

A(x) for the Γ
ϵ(x) in (12)

and pA(x, y) for the p(x, y) in (11) to indicate the dependence on the choice of
the idealized conformity measure A. An idealized conformity measure A is:

� OF-optimal if, for any idealized conformity measure B,

E(x,y),θ

∑
y′ ̸=y

pA(x, y
′) ≤ E(x,y),θ

∑
y′ ̸=y

pB(x, y
′), (13)

where the notation E(x,y),θ refers to the expected value when (x, y) ∼ Q
and θ ∼ U[0, 1] independently;

� OE-optimal if, for any idealized conformity measureB and any significance
level ϵ,

E(x,y),θ |Γϵ
A(x) \ {y}| ≤ E(x,y),θ |Γϵ

B(x) \ {y}| . (14)

Now we can state the result about the OF- and OE-optimality of the con-
ditional probability conformity measure (Theorem 1 in [8]). We say that an
idealized conformity measure A is a refinement of an idealized conformity mea-
sure B if

B(z1) < B(z2) =⇒ A(z1) < A(z2)

for all z1, z2 ∈ Z. Let R(CP) be the set of all refinements of the conditional
probability idealized conformity measure. If C is a criterion of efficiency (OF
or OE), we let O(C) stand for the set of all C-optimal idealized conformity
measures. Theorem 1 in [8] says that

O(OF) = O(Œ) = R(CP). (15)

In [8], (15) was considered to be an asymptotic formalization of the optimal-
ity of the conditional probability conformity measure under the exchangeability
assumption. Let us check that (15) still formalizes the optimality of the condi-
tional probability conformity measure under any hypergraphical model admit-
ting a junction tree. As usual, we suppose that the data-generating distribution

9



Q has a decomposition (1). If a sequence of observations z1, z2, . . . is generated
from Q independently and σ∗ is the summary of (z1, . . . , zl, (x, y)), we can see
from (2) that Pσ∗ → Q almost surely uniformly in (x, y) as l → ∞ (remember
that Z is finite, so that the notion of convergence for measures is unambiguous
and the uniformity is automatic). To check this convergence, direct the junction
tree designating an arbitrary vertex as the root 2 and directing all edges away
from the root; we can then rewrite (2) as

Pσ(z) =
σ2(z)

n

∏
u∈U\{2}

σu(z)

σu′(z)
(16)

(cf. [9], (9.6)), where u′ is the edge between u and its parent; and we can then see
that each fraction in (16) converges to the corresponding conditional probabil-
ity. Therefore, all conditional probability and signed predictability conformity
scores converge to their idealized versions almost surely. On the other hand,
using cumulative observed excess and fuzziness are equivalent to using aver-
age observed excess and fuzziness, which converge to expected observed excess
and fuzziness by the strong law of large numbers. Therefore, in the limit the
efficiency criteria (9) and (10) approach the idealized criteria (14) and (13).
Formally, we can say the following. If a sequence of observations zn = (xn, yn),
n = 1, 2, . . ., is generated from a decomposable Q independently,

1

N

N∑
n=1

Eθ

∑
y ̸=yn

pyCP,n ≤ 1

N

N∑
n=1

Eθ

∑
y ̸=yn

pyB,n + o(1) a.s. as N → ∞, (17)

where pyA,n is the p-value defined by (4) for the training sequence (z1, . . . , zn−1),
test object xn, and conformity measure A, CP is the conditional probability
conformity measure, and B is any other conformity measure. Equation (17) is
a more realistic (albeit still asymptotic) counterpart of the OF criterion (13).
And a more realistic (also asymptotic) counterpart of the OE criterion (14) is

1

N

N∑
n=1

Eθ

∣∣∣Γϵ′

CP,n \ {yn}
∣∣∣ ≤ 1

N

N∑
n=1

Eθ

∣∣Γϵ
B,n \ {yn}

∣∣+ o(1) a.s. as N → ∞

for any confidence level ϵ and any ϵ′ ∈ (ϵ, 1) (arbitrarily close to ϵ), where Γϵ
A,n

is defined by (5) for the training sequence (z1, . . . , zn−1), test object xn, and
conformity measure A.

We discussed in detail only the conditional probability conformity measure;
the signed predictability conformity measure (which is also considered in [8]) is
treated similarly (but more messily). The criteria of efficiency under which the
conditional probability conformity measure becomes optimal are called proba-
bilistic in [8], and that paper argues that probabilistic criteria have important
advantages over the more traditional efficiency criteria based on the number of
multiple predictions or cumulative (or average) (un)confidence.
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Figure 1: The seven-segment display.

Figure 2: Ideal LED images.

4 Experimental Results

This section reports experimental results comparing various versions of con-
formal predictors using hypergraphical models. We use an artificial data set
since it is not easy to find a real-world data set in which the assumptions of a
non-trivial hypergraphical model were clearly satisfied.

4.1 LED data sets

For our experiments we use benchmark LED data sets generated by a program
from the UCI repository [1]. The problem is to predict a digit from an image
in the seven-segment display shown in Figure 1.

Figure 2 shows examples of objects in the data set (these are the ten “ideal
images” of digits; there are also digits corrupted by noise). The seven LEDs
(light emitting diodes) can be lit in different combinations to represent a digit
from 0 to 9. The program generates observations with noise. There is an ideal
image for each digit, as shown in Figure 2. An observation has seven binary
attributes s0, . . . , s6 (si is 1 if the ith LED is lit) and a label c, which is a decimal
digit. The program randomly chooses a label (0 to 9 with equal probabilities),
inverts each of the attributes of its ideal image with probability pnoise := 1%
independently, and adds the noisy image and its label to the data set.

Let (S0, . . . , S6, C) be the vector of random variables corresponding to the
attributes and the label, and let (s0, . . . , s6, c) be an observation. According to
the data-generating mechanism the probability of the observation decomposes

11



as

Q ({(s0, . . . , s6, c)}) = Q7 (C = c) ·
6∏

i=0

Qi (Si = si | C = c) , (18)

where Q7 is the uniform distribution on the decimal digits and

Qi (Si = si | C = c) :=

{
1− pnoise if si = sci
pnoise otherwise,

i = 0, . . . , 6, (19)

(sc0, . . . , s
c
6) being the attributes of the ideal image for the label c. As usual,

observations are generated independently.

4.2 Hypergraphical assumptions for LED data sets

We consider two hypergraphical models that agree with the decomposition (18).
These models make different assumptions about the pattern of dependence be-
tween the attributes and the label; they do not depend on a particular probabil-
ity of noise pnoise or the fact that the same value of pnoise is used for all LEDs.
For both hypergraphical structures the set of variables is V := {s0, . . . , s6, c}.

Nontrivial hypergraphical model

Consider the hypergraphical structure with the clusters

E := {{si, c} : i = 0, . . . , 6} .

A junction tree for this hypergraphical structure can be defined as a chain with
vertices U := {ui : i = 0, . . . , 6} and the bijection Cui

:= {si, c}. By saying that
U is a chain we mean that there are edges connecting vertices 0 and 1, 1 and
2, 2 and 3, 3 and 4, 4 and 5, and 5 and 6 (and these are the only edges in the
tree). It is clear that this is a junction tree and that Cs = {c} for each edge s.
It is also clear from (18) that the assumption (1) is satisfied; e.g., we can set

f{s0,c} (s0, c) := Q7 (C = c) ·Q0 (S0 = s0 | C = c) ;

f{si,c} (si, c) := Qi (Si = si | C = c) , i = 0, . . . , 6.

Exchangeability model

The hypergraphical model with no information about the pattern of dependence
between the attributes and the label is the exchangeability model. The corre-
sponding hypergraphical structure has one cluster, E := {V }. The junction tree
is the one vertex associated with V and no edges.

4.3 Experiments

For our experiments we create a LED data set with 10, 000 observations. The
data are generated according to the model (18) with the probability of noise

12
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Figure 3: Cumulative unconfidence for online predictions. The results are for
the LED data set with 1% of noise and 10, 000 observations.

Table 1: The final values of the cumulative unconfidence in Figure 3 for the
black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 107.69 108.03 . . . 106.96 106.23 9.85
pv: hgr; CM: hgr CP 109.68 107.80 . . . 107.80 105.83 9.82
pv: exch; CM: hgr SP 83.40 90.26 . . . 89.09 82.19 7.07
pv: hgr; CM: hgr SP 84.89 90.56 . . . 89.45 82.39 6.81

pnoise = 1%. Both for data generation and data processing, we set the seed of
the pseudorandom number generator to 0. The text below assumes that the
reader can see Figures 3–6 in colour; the colours become different shades of grey
in black-and-white. We hope our descriptions will be detailed enough for the
reader to identify the most important graphs unambiguously.

Each of the figures corresponds to an efficiency criterion for conformal pre-
dictors; namely, Figure 3 plots Unconfn versus n = 1, . . . , 10000 in the online
prediction protocol, Figure 4 plots OFn versus n = 1, . . . , 10000, Figure 5 plots
Multϵ10000/10000 (the percentage of multiple predictions) versus ϵ ∈ [0, 0.05],
and Figure 6 plots OEϵ

10000/10000 (the average excess of predictions) versus
ϵ ∈ [0, 0.05]. We consider two conformity measures (CM): the conditional prob-
ability (CP) conformity measure (6) and the signed predictability (SP) confor-
mity measure (8). The graphs corresponding to the former are represented in
our plots as solid lines, and the graphs corresponding to the latter are repre-
sented as dashed lines.

Two of the plots in each figure correspond to idealized predictors and are
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Figure 4: Cumulative observed fuzziness for online predictions. The results are
for the LED data set with 1% of noise and 10, 000 observations.

Table 2: The final values of the observed fuzziness in Figure 4 for the black and
blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 409.6 422.2 . . . 402.7 407.0 24.75
pv: hgr; CM: hgr CP 393.6 402.2 . . . 385.2 384.4 23.99
pv: exch; CM: hgr SP 675.4 747.0 . . . 717.1 676.1 55.87
pv: hgr; CM: hgr SP 666.1 729.8 . . . 701.2 657.2 53.90

drawn only for comparison, representing an unachievable ideal goal. In the
idealized case we know the true distribution for the data (given by (18), (19),
and pnoise = 1%). The true distribution is used instead of the backward kernel
Pσ∗ in both (4) and (6) for the CP conformity measure and in both (4) and (8)
for the SP conformity measure. It gives us the ideal results (the two red lines
in our plots) for the two conformity measures, CP and SP. At least one of them
gives the best results in each of the figures (remember that for all our criteria
the lower the better).

For each of the two conformity measures we also consider four realistic pre-
dictors (which are conformal predictors, unlike the idealized ones). The pure
hypergraphical conformal predictor (represented by blue lines in our plots) is
obtained using the nontrivial hypergraphical model both when computing p-
values (see (4)) and when computing the conformity measure ((6) in the case of
CP and (8) in the case of SP). Analogously we use the exchangeability model to
obtain the pure exchangeability conformal predictor (green lines in our plots).
The two mixed conformal predictors (black and yellow lines) are obtained when
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Figure 5: The final percentage of multiple predictions for significance levels
between 0% and 5%. The results are for the LED data set with 1% of noise and
10, 000 observations.

Table 3: The final percentage of multiple predictions in Figure 5 for the signifi-
cance level 1% and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 0.3720 0.4046 . . . 0.4109 0.3812 0.0905
pv: hgr; CM: hgr CP 0.3920 0.4047 . . . 0.4128 0.3815 0.0896
pv: exch; CM: hgr SP 0.1972 0.2425 . . . 0.2478 0.1919 0.0516
pv: hgr; CM: hgr SP 0.2034 0.2437 . . . 0.2502 0.1962 0.0489

we use different models to compute the p-values and the conformity scores.
The intuition behind the pure and mixed conformal predictors can be ex-

plained using the distinction between hard and soft models made earlier in [10].
The model used when computing the p-values (see (4)) is the hard model; the va-
lidity of the conformal predictor depends on it. The model used when computing
conformity scores (see (6) and (8)) is the soft model; when it is violated, validity
is not affected, although efficiency can suffer. The true probability distribution
(18) conforms to both the exchangeability model and the nontrivial hypergraph-
ical model; therefore, all four conformal predictors are automatically valid, and
we study only their efficiency. (In the context of this paper, it is obvious that
the exchangeability model is more general than the nontrivial hypergraphical
model, but we can also apply the criterion given in [9], Proposition 9.2.)

In the legends of Figures 3–6, the hard model used is indicated after “pv”
(the way of computing the p-values), and the soft model used is indicated after
“CM” (the conformity measure); “exch” refers to the exchangeability model,
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Figure 6: The final average observed excess for significance levels between 0%
and 5%. The results are for the LED data set with 1% of noise and 10, 000
observations.

Table 4: The final average observed excess in Figure 6 for the significance level
1% and for the black and blue graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr CP 0.5218 0.5115 . . . 0.5197 0.5451 0.1237
pv: hgr; CM: hgr CP 0.5299 0.4868 . . . 0.5025 0.5228 0.1216
pv: exch; CM: hgr SP 1.4870 1.7030 . . . 1.6648 1.4147 0.3598
pv: hgr; CM: hgr SP 1.4959 1.6327 . . . 1.6359 1.3806 0.3432

and “hgr” refers to the nontrivial hypergraphical model.
The most interesting graphs in Figures 3–6 are the black ones, corresponding

to the exchangeability model as the hard model and the nontrivial hypergraph-
ical model as the soft model. The performance of the corresponding conformal
predictors is typically better than, or at least close to, the performance of any of
the remaining realistic predictors. The fact that the validity of these conformal
predictors only depends on the exchangeability assumption makes them partic-
ularly valuable. The yellow graphs correspond to the nontrivial hypergraphical
model as the hard model and the exchangeability model as the soft model; the
performance of the corresponding conformal predictors (rather inane, since it
does not make sense for the hard model to be more restrictive than the soft
model) is very poor in our experiments.

Now we will comment on each of the figures, and the corresponding tables,
separately. In the case of the figures, the only available results are for the seed
0 of the pseudorandom number generator, but the corresponding tables and our

16



experiments not included in the paper confirm that our conclusions apply to
other seeds as well.

Figure 3 shows the cumulative unconfidence Unconfn, and so the right con-
formity measure to use is SP, as discussed at the end of Section 3; and indeed,
all SP graphs lie below their CP counterparts. The two bottom graphs are the
ones corresponding to idealized predictors; the graph corresponding to the CP
idealized predictor, however, has a suboptimal slope. Of the realistic predictors,
the lowest graph is the black SP one (but the blue SP graph, corresponding to
the pure hypergraphical conformal predictor, is very close).

Table 1 shows the final values of the cumulative unconfidence in Figure 3
for the four most important graphs (two black and two blue) for several seeds.
The values of the seed are given in the units of 10, 000 (so that 0 stands for
0, 1 for 10, 000, 2 for 20, 000, etc.), which is the minimal step to ensure that
different experiments are based on completely different pseudorandom numbers
(when the seed is initialized to n, the successive calls to the R pseudorandom
number generator produce the pseudorandom numbers corresponding to the
seeds n, n+1, n+2, etc.); the “104” in parentheses serves as a reminder of this.
The last two columns of this and other tables give aggregate values: column
“Average” gives the average of all the 100 values for the seeds 0–99, and column
“St. dev.” gives the standard estimate of the standard deviation computed from
those 100 values (namely, the square root of the standard unbiased estimate
of the variance). The table confirms that each black graph is very close to
the corresponding blue graph on average (see the penultimate column), but the
accuracy of our experiments is insufficient to say which tends to be lower: see
the last column (to obtain an estimate of the standard deviation of the average,
the value given in the last column should be divided by 10).

Figure 4 shows the cumulative observed fuzziness OFn. For this criterion
the predictors based on the CP conformity measure outperform the predictors
based on the SP conformity measure (the solid lines are below the dashed lines
of the same colour), as expected. The bottom graph corresponds to the idealized
CP predictor; the idealized SP predictor is the second best most of the time,
but at the end it is overtaken by the black and blue graphs corresponding to the
conformal predictors based on the CP conformity measure using the nontrivial
hypergraphical model. The black and blue graphs are very close; the blue one
is slightly lower but the conformal predictor corresponding to the black one still
appears preferable as its validity only depends on the weaker exchangeability
assumption. Table 2 confirms that the black and blue graphs are close to each
other on average, although there is a clear tendency for the blue ones to be
lower.

Figure 5 shows the percentage of multiple predictions after observing 10, 000
observations as function of the significance level. For small significance levels the
percentage of the multiple predictions is smaller for the predictors based on the
SP conformity measure, again as expected. The performance of the conformal
predictor corresponding to the black SP graph is again remarkably good, better
than that of any other realistic predictor, although very close to the blue SP
graph. According to Table 3, the accuracy of our experiments is insufficient to
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tell whether the two blue graphs tend to be lower than the corresponding black
ones at the significance level 1% for our data-generating mechanism.

Figure 6 shows the average observed excess of predictions after observing
10, 000 observations as function of the significance level. For small significance
levels the predictors based on the CP conformity measure perform better, again
confirming the theoretical results mentioned earlier. The black CP graph is very
close to the blue CP graph, corresponding to the pure hypergraphical predictor,
except for very low significance levels when the average excess exceeds 1. The
closeness at the significance level 1% is confirmed by Table 4.

5 Label Conditional Conformal Prediction for
HOCM

The usual notion of validity for conformal predictors is unconditional; the overall
probability of error being equal to the significance level does not prevent the
probability of error for different classes (such as 0s, 1s, etc. in the case of LED
data sets) being different from ϵ, as long as the average probability over all
classes remains ϵ. This section studies, theoretically and experimentally, label
conditional conformal prediction under hypergraphical models, which achieves
class-wise validity. We start with the formal definition of label conditional
conformal predictors based on hypergraphical models, and follow by an empirical
study of these predictors using an LED data set.

5.1 Definition and properties of label conditional confor-
mal prediction

In general, the observations can be divided in a natural way into a finite number
of categories (for example, each category can corresponds to a label, or to a kind
of objects). We say that a conformal predictor is category-wise valid if for any
significance level ϵ ∈ (0, 1) the conditional probability of error given the test
observation’s category is ϵ. The automatic validity of conformal predictors (dis-
cussed in Subsection 3.3 above) does not guarantee their category-wise validity:
for some categories error probabilities can be higher than the significance level,
which could be balanced by lower error probabilities for other categories. A
modification of conformal predictors that achieve category-wise validity, called
Mondrian conformal predictors, were introduced in [9], Section 4.5, under the
exchangeability assumption. This section studies Mondrian conformal predic-
tors under hypergraphical models focusing on the categories corresponding to
labels; the corresponding categories are called classes, as usual, and the corre-
sponding Mondrian conformal predictors are called label conditional conformal
predictors.

Formally, hypergraphical label conditional conformal predictors are defined in
the same way as hypergraphical conformal predictors in Section 3 (see (3)–(5))
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except that the definition (4) of p-values is modified as follows:

py :=

∑
(x′,y′)∈Z:y′=y,α(x′,y′)<α(x,y)

Pσ∗((x′, y′))∑
(x′,y′)∈Z:y′=y Pσ∗((x′, y′))

+ θ

∑
(x′,y′)∈Z:y′=y,α(x′,y′)=α(x,y)

Pσ∗((x′, y′))∑
(x′,y′)∈Z:y′=y Pσ∗((x′, y′))

, (20)

where, as usual, the sums involve only those (x′, y′) ∈ Z for which α(x′,y′) is
defined. Using these p-values instead of (4), hypergraphical label conditional
conformal predictors are defined analogously to the hypergraphical conformal
predictions in Section 3; we will sometimes refer to the latter as “unconditional”
conformal predictors. To summarize, the conformity scores are defined by (3),
the p-values are defined by (20), and the prediction sets by (5).

As in the unconditional case, we can use both the conditional probability
conformity measure (6) and the signed predictability conformity measure (8)
when computing the conformity scores (3). In this section we will only consider
the former. In the label conditional case it is still true that the conditional
probability conformity measure is optimal in the sense of OEϵ

n and in the sense
of OFn: see [11].

5.2 Empirical study

This subsection studies the performance of unconditional and label conditional
conformal predictors under hypergraphical models. First we look at the class-
wise validity of these predictors and then we compare their efficiency.

As before, the LED data set that we use consists of 10, 000 observations
generated with pnoise = 1%. The results presented in this section are for the
seed 0 of the pseudorandom number generator, for both the data generation and
data processing programs. The two hypergraphical models were described in
Subsection 4.2. Predictors for these experiments are based on the hypergraphical
CP conformity measure (6).

Class-wise validity

In our first experiment we assess the final percentage of errors within different
classes. For each of the ten classes corresponding to labels y ∈ {0, . . . , 9} and
at each significance level ϵ ∈ (0, 1) the final percentage of errors is calculated by

Erry,ϵ :=
|{i = 1, . . . , 10000 | yi = y, yi /∈ Γϵ

i}|
|{i = 1, . . . , 10000 | yi = y}|

. (21)

We study four conformal predictors: the pure exchangeability conformal predic-
tor (the exchangeability model is used for the p-values (4) and for the conformity
scores (6)), the pure hypergraphical conformal predictor (the nontrivial hyper-
graphical model is used in (4) and (6)), the pure exchangeability label conditional
conformal predictor (the exchangeability model is used in (20) and in (6)), and
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Figure 7: The final percentage of errors for different classes for (unconditional)
hypergraphical conformal predictors; different colours correspond to different
classes. The predictions are not class-wise valid. The left panel is for the pure
exchangeability conformal predictor and the right panel for the pure hyper-
graphical conformal predictor. The results are for the LED data set of 10, 000
observations with 1% of noise.

the pure hypergraphical label conditional conformal predictor (the nontrivial hy-
pergraphical model is used in (20) and (6)); the first two are the same predictors
that we already studied in previous sections, and the last two are new.

All four predictors make predictions in the online mode, and the final per-
centage of errors (21) is calculated for these predictions and all significance levels
between 0% and 100%. The percentage of errors plotted against the significance
level will be called the calibration graph. For valid predictions the calibration
graph is the diagonal extending from the bottom left corner (no errors at the
significance level 0%, which is achieved when all prediction sets are the whole la-
bel set) to the top right corner (errors at each prediction step at the significance
level 100%, which is the result of all predictions being the empty predictions).

Figure 7 shows the calibration graphs for the two unconditional conformal
predictors. In each plot, the ten calibration graphs of different colours corre-
spond to labels {0, 1, . . . , 9}. As expected, these unconditional conformal predic-
tions are not class-wise valid. In these plots, calibration graphs that are below
the diagonal correspond to easy labels (there are fewer errors than expected),
and calibration graphs above the diagonal are for difficult labels (the number of
errors is greater than expected). The most difficult digits are 8 and 9: this is
not surprising since each of them has 3 other digits at a Hamming distance of 1
from it, more than any other digit (see Figure 2; 0, 6, and 9 are at a Hamming
distance of 1 from 8, and 3, 5, and 8 are at a Hamming distance of 1 from 9).
The easiest digits are 2 and 4, because these are the only digits that do not have
any other digits at a Hamming distance of 1 from them (and both have 2 digits
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Figure 8: The same as Figure 7 for hypergraphical label conditional conformal
predictors. The predictions are class-wise valid.

at a Hamming distance of 2: 3 and 8 for 2, and 1 and 9 for 4).
Figure 8 shows the results for the two label conditional conformal predic-

tors under hypergraphical models. These predictors are constructed in order
to produce class-wise valid predictions, and the experiments just confirm this
property.

Efficiency

Let us compare the efficiency of conformal prediction and label conditional con-
formal prediction under hypergraphical models. We do so by calculating cumu-
lative observed fuzziness OFn (defined earlier in (10)).

Figure 9 shows the cumulative observed fuzziness for online predictions. The
solid lines are for unconditional predictors, whose p-values are defined by (4),
and the dash-dot lines are for label conditional predictors, whose p-values are
defined by (20). Again, two models are considered: the exchangeability model
and the nontrivial hypergraphical model; each model can be used for calculat-
ing the hypergraphical CP conformity scores (6) or for p-values ((4) and (20)).
These combinations give four unconditional conformal predictors and four la-
bel conditional conformal predictors. Also, as before, we consider two idealized
predictors: the unconditional idealized predictor is obtained using the true dis-
tribution for the data instead of the backward kernel Pσ∗ in both (4) and (6),
and analogously the label conditional idealized predictor is obtained using the
true distribution in both (20) and (6). The notation in the legend is similar to
that in the previous set of experiments (see Figures 3–6) except that “lc” stands
for “label conditional”.

As expected, the price to pay for the class-wise validity of label conditional
conformal predictors is that they are less efficient than the corresponding uncon-
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Figure 9: Observed fuzziness for unconditional conformal predictors and label
conditional (lc) conformal predictors. The results are for the LED data set of
10, 000 observations with 1% of noise.

Table 5: The final values of the observed fuzziness in Figure 9 for the black and
blue label conditional graphs.

Seed (104) 0 1 . . . 99 Average St. dev.

lc pv: exch; CM: hgr CP 726.1 729.7 . . . 709.6 724.3 31.97
lc pv: hgr; CM: hgr CP 517.5 522.1 . . . 503.2 512.2 30.96

ditional conformal predictors. But the performance of the pure hypergraphical
label conditional conformal predictor (the second lowest dash-dot line) is almost
as good as that for the corresponding unconditional one (the second lowest solid
line). The performance of the other label conditional predictors (unfortunately,
including the predictor corresponding to the black line, which we recommended
in the unconditional setting of the previous section) is noticeably worse than
that of the corresponding unconditional ones. The final values for the black and
blue graphs in Figure 9 are given in Table 5.

From the computational point of view, the label conditional way of comput-
ing p-values (20) is cheaper: for the label conditional p-values one only needs
to look at the conformity scores of configurations with the same label.

6 Conclusion

The main finding of this paper is that nontrivial hypergraphical models can
be useful for conformal prediction when they are true. More surprisingly, in
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our experiments and the unconditional setting they only need to be used as
soft models; the performance does not suffer much if the exchangeability model
continues to be used as the hard model. This interesting phenomenon deserves
a further empirical study.

The empirical study of label conditional conformal predictors under hyper-
graphical models has demonstrated that they are essential for the class-wise
validity. Finally, we have seen that the performance of label conditional con-
formal predictors is close to that of unconditional ones if the hypergraphical
models are used as both the hard and soft models.

Directions of further research include extending our approach to the regres-
sion setting (where Y is the set of real numbers) and the multilabel setting
(where each object can belong to multiple classes).
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