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Abstract

This paper proposes a way of protecting probabilistic prediction models against
changes in the data distribution, concentrating on the case of classification and
paying particular attention to binary classification. This is important in appli-
cations of machine learning, where the quality of a trained prediction algorithm
may drop significantly in the process of its exploitation. Our techniques are
based on recent work on conformal test martingales and older work on predic-
tion with expert advice, namely tracking the best expert.
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1 Introduction

A common problem in applications of machine learning is that, soon after a
prediction algorithm is trained, the distribution of the data may change, and
the prediction algorithm may need to be retrained. There are efficient ways
of online detection of a change in distribution, such as using conformal test
martingales [23], but there are inevitably awkward gaps between the change in
distribution and its detection and between the detection of the change and the
deployment of a retrained prediction algorithm.

We will refer to the trained prediction algorithm as our prediction model.
This paper proposes a way of preventing a catastrophic drop in the quality of
the prediction model when the data distribution changes. Given a prediction
model, our procedure gives a protected prediction model that is more robust
to changes in the data distribution. To use Anscombe’s [1] insurance metaphor
(repeatedly used already in [11]), our procedure provides an insurance policy
against such changes. The main desiderata for such a policy are its low price
and its efficiency.

The case of regression was discussed in an earlier paper [24]. In this pa-
per we concentrate on the simpler case of classification, and first of all binary
classification. We will often assume that the label space is {0, 1}. Suppose we
are given a predictive system that maps past data and an object x with an
unknown label y ∈ {0, 1} to a number p ∈ [0, 1], interpreted as the predicted
probability that y = 1. We will refer to it as our base predictive system. In
this paper we are mostly interested in the case where the base predictive system
is a prediction model obtained by training a prediction algorithm, and so the
predicted probability that y = 1 depends only on the object x, but allowing the
dependence on the past data does not complicate the exposition.

We will be interested in two seemingly different questions about the base
predictive system:

Online testing Can we gamble successfully against the base predictive system
(at the odds determined by its predicted probabilities)? We are interested
in online testing [23], i.e., in constructing test martingales (nonnegative
martingales with initial value 1) with respect to the base predictive system
that take large values on the actual sequence of observations.

Online prediction Can we improve the base predictive system, modifying its
predictions pn to better predictions p′n?

If the quality of online prediction is measured using the log-loss function [8],
the difference between the two questions almost disappears, as we will see in
Sections 3 and 5.

After discussing online testing in Section 2 and online prediction in Section 3,
we will give an example of a theoretical performance guarantee for our prediction
procedure (an application of a known technique) in Section 4. In Section 5 we
report encouraging experimental results, and Section 6 concludes.

Two appendixes contain proofs and further experimental results. Our com-
puter code for the experiments is released in the form of Jupyter notebooks.
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Algorithm 1 Simple Jumper martingale ((p1, p2, . . . ) 7→ (S1, S2, . . . ))

1: Cθ := 1θ=0 for all θ ∈ Θ
2: C := 1
3: for n = 1, 2, . . . :
4: for θ ∈ Θ: Cθ := (1− J)Cθ + (J/ |Θ|)C
5: for θ ∈ Θ: Cθ := CθBfθ(pn)({yn})/Bpn({yn})
6: Sn := C :=

∑
θ∈Θ Cθ

2 Testing predictions by betting

We consider a potentially infinite sequence of actual observations z1, z2, . . . , each
consisting of two components: zn = (xn, yn), where xn ∈ X is an object chosen
from an object space X, and yn ∈ {0, 1} is a binary label. A predictive system
is a function that maps any object x and any finite sequence of observations
z1, . . . , zi (intuitively, the past data) for any i ∈ {0, 1, . . . } to a number p ∈ [0, 1]
(intuitively, the probability that the label of x is 1). Fix a base predictive
system, and let p1, p2, . . . be its predictions for the actual observations: pn is
the prediction output by the base predictive system on xn and z1, . . . , zn−1; it
is interpreted as the predicted probability that yn = 1. (We will not need any
measurability assumptions; in particular, X is not supposed to be a measurable
space.)

In this paper we are mostly interested in the special case where the output
p of the base predictive system depends only on x and not on z1, . . . , zi. In this
case we will say that our predictive system is a prediction model. A typical way
in which prediction models appear in machine learning is as result of training a
prediction algorithm. In Section 5 we will only consider prediction models, but
for now we do not impose this restriction.

Our first online testing procedure is given as Algorithm 1, where we use
the notation 1E to mean 1 if a property E holds and 0 if not. One of its two
parameters is a finite non-empty family fθ : [0, 1]→ [0, 1], θ ∈ Θ, of calibrating
functions. The intuition behind fθ is that we are trying to improve the base
predictions pn, or calibrate them; the idea is to use a new prediction fθ(pn)
instead of pn. We assume that Θ contains a distinguished element 0 ∈ Θ (used
in line 1 of Algorithm 1).

Perhaps the simplest choice (explored in Appendix B) is to use a finite subset
of the family

fθ(p) := p+ θp(1− p), (1)

where θ ∈ [−1, 1], and θ = 0 is the distinguished element. For θ > 0 we are
correcting for the forecasts p being underestimates of the true probability of 1,
while for θ < 0 we are correcting for p being overestimates; f0 is the identity
function (no correction).

We do not know in advance which fθ will work best, and moreover, it seems
plausible that suitable values of θ will change over time. Therefore, we use
the idea of “tracking the best expert” [10]. Algorithm 1 uses the notation Bp,
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p ∈ [0, 1], for the Bernoulli distribution on {0, 1} with parameter p: Bp({1}) = p.
To each sequence θ = (θ1, θ2, . . . ) of elements of Θ corresponds the elementary
test martingale

n∏
i=1

Bfθi (pi)({yi})
Bpi({yi})

, n = 0, 1, . . . . (2)

The other parameter of the Simple Jumper martingale of Algorithm 1 is
J ∈ [0, 1], the jumping rate. This martingale is obtained by “derandomizing”
(to use the terminology of [20]) the stochastic test martingale corresponding to
the probability measure µ on (θ1, θ2, . . . ) ∈ [0, 1]∞ defined as the probability
distribution of the following Markov chain with state space Θ. The initial state
θ0 (ignored by µ) is 0 (line 1 of Algorithm 1), and the transition function pre-
scribes maintaining the same state with probability 1− J and, with probability
J , choosing a new state from the uniform probability measure on Θ (line 4).
We will sometimes refer to it as the Simple Jumper Markov chain.

We derandomize the stochastic test martingale by averaging,

Sn :=

∫ n∏
i=1

Bfθi (pi)({yi})
Bpi({yi})

µ(dθ),

which gives us a deterministic test martingale. This construction is standard in
conformal testing [23, Section 3].

In one respect the Simple Jumper martingale is not adaptive enough: we
assume that a suitable jumping rate J is known in advance. Instead, we will use
the Composite Jumper martingale that depends on two parameters, π ∈ (0, 1)
and a finite set J of non-zero jumping rates. It is defined to be the weighted
average

Sn := π +
1− π
|J|

∑
J∈J

SJn , (3)

where SJ is computed by Algorithm 1 fed with J as its parameter.
In Appendix B we will see that already the simple choice (1) leads to very

successful betting for popular benchmark datasets. However, there are numer-
ous other natural calibration functions, some of which are shown in Figure 1.
The function in red is in the quadratic family (1) (and its parameter is θ = 1);
these functions are fully above, fully below, or (for θ = 0) situated on the bisec-
tor of the first quadrant (shown as the dotted line). In many situations other
calibration functions will be more suitable. For example, it is well known that
untrained humans tend to be overconfident [12, Part VI, especially Chapter
22]. A possible calibration function correcting for overconfidence is the cubic
function

fa,b(p) := p+ ap(p− b)(p− 1), (4)

where (a, b) = θ ∈ [0, 1]2. An example of such a function is shown in Figure 1 in
blue (with parameters a = 1.5 and b = 0.5). The meaning of the parameters is
that b is the value of p (such as 0.5) that we believe does not need correction, and
that a indicates how aggressively we want to correct for overconfidence (a < 0

3
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Figure 1: Examples of calibration functions.

meaning that in fact we are correcting for underconfidence). If the predictor
predicts a p that is close to 0 or 1, we correct for his overconfidence (assuming
a > 0) by moving p towards the neutral value b.

In the experimental Section 5 we will use Cox’s [3, Section 3] calibration
functions

fα,β(p) :=
pβ exp(α)

pβ exp(α) + (1− p)β
, (5)

where (α, β) = θ ∈ R2. We obtain the identity function fα,β(p) = p for α = 0
and β = 1; these are the “neutral” values, 0 = (0, 1) ∈ Θ. Cox starts his
exposition in [3, Section 3] from the one-parameter subfamily

fβ(p) :=
pβ

pβ + (1− p)β
, (6)

where β ∈ R, obtained by fixing α := 0. We are mostly interested in β > 0,
although β = 0 (when every p is transformed to 0.5) and β < 0 (which reverses
the order of the label probabilities) are also possible. Similarly, we can set β to
its neutral value 1 obtaining another one-parameter subfamily,

fα(p) :=
p exp(α)

p exp(α) + (1− p)
. (7)

An example of a function in the class (6) is shown in Figure 1 in green (with
β = 0.75); the plot in orange shows a function in the class (7) (with α = 1).

Remark 1. Cox’s calibration functions look particularly natural (are linear
functions) in terms of the log odds ratios (as presented in Cox [3, Section 3]).
Namely, (5) can be rewritten as

log
fα,β(p)

1− fα,β(p)
:= α+ β log

p

1− p
. (8)
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Multiclass case

The advantage of the representations (5), (6), and (7) over (8) is that they are
easy to extend to the multiclass case. Let the label space be Y with K :=
|Y| < ∞; therefore, each prediction is a set of nonnegative numbers p = (py |
y ∈ Y) ∈ [0, 1]K summing to 1, where py is the predicted probability of y. The
calibration functions (5) become

fα,β(p)y :=
pβy exp(α(y))∑

y′∈Y pβy′ exp(α(y′))
, (9)

where α ∈ RY and β ∈ R. Formally, the number of parameters in (9) is K + 1,
but the effective number of parameters is K since the transformation (9) does
not change when the same constant (positive or negative) is added to all α(y),
y ∈ Y. The calibration functions (6) become

fβ(p)y :=
pβy∑

y′∈Y pβy′
,

where β ∈ R. Therefore, this family still depends on one real-valued parameter,
β.

3 Protecting prediction algorithms

For any predictive system, we define its probability process as a function mapping
any finite sequence of observations to the product Bp1(y1) · · ·Bpn(yn) (i.e., the
probability attached to this sequence by the predictive system), where n is the
number of observations in the sequence, y1, . . . , yn are their labels, and p1, . . . , pn
are the predictions for those observations. We regard the probability process
as the capital process of a player playing an extremely challenging (definitely
unfair) game: his capital cannot go up, and for it not to go down he has to
predict with the probability measure concentrated on the true outcome. The
probability process of the base predictive system will be referred to as the base
probability process.

Remark 2. The notion of a probability process is very similar to Cox’s [4]
notion of partial likelihood, but we cannot say that a probability process is
partial in any sense (since it is not part of a fuller probability process: there
is no probability measure on the objects [17, Section 10.5]). In the absence of
objects it becomes close to likelihood (however, unlike likelihood, it is not a
function of any parameters). It is even closer to the notion of measure as used
in the algorithmic theory of randomness: see, e.g., [13, Definition 4.2.1].

For simplicity, we will discuss only positive probability processes and mar-
tingales (i.e., those that do not take zero values). This will be sufficient for the
considerations of Section 5. Each test martingale with respect to the base pre-
dictive system is the ratio of a probability process to the base probability process
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Algorithm 2 Composite Jumper predictor ((p1, p2, . . . ) 7→ (p′1, p
′
2, . . . ))

1: P := π
2: AJθ := 1−π

|J| 1θ=0 for all J ∈ J and θ ∈ Θ

3: for n = 1, 2, . . . :
4: for J ∈ J:
5: A :=

∑
θ A

J
θ

6: for θ ∈ Θ: AJθ := (1− J)AJθ +AJ/ |Θ|
7: p′n := pnP +

∑
J,θ fθ(pn)AJθ

8: P := PBpn({yn})
9: for J ∈ J and θ ∈ Θ: AJθ := AJθBfθ(pn)({yn})

10: C := P +
∑
J,θ A

J
θ

11: P := P/C
12: for J ∈ J and θ ∈ Θ: AJθ := AJθ /C

(i.e., is a probability ratio process, familiar from sequential analysis), and vice
versa. This establishes a bijection between test martingales and probability pro-
cesses (for a fixed base predictive system). Algorithm 2 is the predictive system
whose probability process corresponds to the test martingale of Algorithm 1
averaged as in (3).

Algorithm 2 implements the Bayesian merging rule and is a special case the
Aggregating Algorithm (AA) [20] corresponding to the log-loss function

λ(y, p) :=

{
− log p if y = 1

− log(1− p) if y = 0,
(10)

where y ∈ {0, 1} is the true label and p ∈ [0, 1] is its prediction (the logarithm
is typically natural, but in Section 5 we will consider decimal logarithms). In
the case where π = 0 and |J| = 1, it is also a special case of the Fixed Share
algorithm of [10].

The AA is described in [20, Section 2], and in our case of the log-loss function
the optimal in a natural sense learning rate is η := 1, and the AA coincides with
the APA (“Aggregating Pseudo-Algorithm”). Analogously to (2) but reflecting
the operation of averaging (3), to each J ∈ J and each sequence θ = (θ1, θ2, . . . )
corresponds the elementary predictor that outputs, at each step n,

p′n := fθn(pn), n = 1, 2, . . . ,

as its prediction. There is also the base elementary predictor that just coincides
with the base predictive system. The prior probability measure on the elemen-
tary predictors is built on top of the Simple Jumper Markov chain (described
in the previous section) and taking the averaging (3) into account:

� With probability π, we choose the base elementary predictor (which is our
passive elementary predictor).
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� Otherwise, we choose the jumping rate J from the uniform probability
measure on J.

� Having chosen J , we generate θ := (θ1, θ2, . . . ) as in the previous section,
which gives us the active elementary predictor (J,θ).

This determines the prior distribution on the elementary predictors.
The variable P in Algorithm 2 holds the posterior weight of the passive

elementary predictor, and AJθ holds the total posterior weight of the elementary
predictors (J,θ) that are in the state θ (i.e., θn = θ, where θ = (θ1, θ2, . . . )
and n is the current step). We initialize them to their prior weights (lines 1–2),
and the recursion is given in lines 6, 8, 9, 11, and 12. Line 6 corresponds to the
transition function of the Simple Jumper Markov chain with the jumping rate J ,
and lines 8–9 are the Bayesian weight updates. In line 10 we compute the total
posterior weight of the elementary predictors, and in lines 11–12 we normalize
the weights. In line 7 we compute the protected prediction as weighted average
of the predictions produced by the elementary predictors.

We refer to the method exemplified by Algorithm 2 as protected probabilistic
classification. We start from a base predictive system, design a way of gam-
bling against it (a test martingale), and then “turn the tables” and use the test
martingale as a protection against the kind of changes that the test martingale
benefits from. If and when those changes happen, the product (protected prob-
ability process) of the base probability process and the test martingale outper-
forms the base probability process; equivalently, the protected predictive system,
given by Algorithm 2 applied to a base predictive system, outperforms the base
predictive system in terms of the log loss function.

We will use the notation

Loss(p1, . . . , pn | y1, . . . , yn) :=

n∑
i=1

λ(yi, pi)

for the cumulative log-loss of predictions pi ∈ [0, 1] on labels yi ∈ {0, 1}, where
λ is defined by (10). The protection provided by Algorithm 2, and similar
procedures, has its price, since the loss suffered by the protected predictive
system can be greater than the loss suffered by the base predictive system. The
price of protection for Algorithm 2 is defined to be

sup
(
Loss(p′1, . . . , p

′
n | y1, . . . , yn)− Loss(p1, . . . , pn | y1, . . . , yn)

)
= sup (− lnSn) , (11)

where the sup is over all n, all object spaces X, all base predictive systems (out-
putting predictions p1, p2, . . . ), and all sequences of observations (with yi as their
labels). Of course, the definition given by the left-hand side of (11) is applica-
ble to any system transforming predictions p1, p2, . . . to predictions p′1, p

′
2, . . . ;

for Algorithm 2 we have an equivalent definition given by the right-hand side
of (11), S being the Composite Jumper martingale. We are particularly inter-
ested in the case of a finite price of protection.
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4 A theoretical guarantee

A simple performance guarantee for Algorithm 2 is given by the following result
(proved in Appendix A).

Theorem 3. The price of protection for Algorithm 2 is log 1
π . Besides, for

any n, any jumping rate J , any sequence of observations, and any sequence
fθ1 , . . . , fθn of calibrating functions (from the family (fθ | θ ∈ Θ)),

Loss(p′1, . . . , p
′
n | y1, . . . , yn)

≤ Loss(fθ1(p1), . . . , fθn(pn) | y1, . . . , yn)

+ log
1

1− π
+ log |J|+ k log(|Θ| − 1)

+ k log
1

J ′
+ (n− k − 1) log

1

1− J ′
, (12)

where

J ′ :=
|Θ| − 1

|Θ|
J (13)

and k = k(θ1, . . . , θn) is the number of switches,

k := |{i ∈ {1, . . . , n} : θi 6= θi−1}| ,

with θ0 := 0.

The price of protection log 1
π in Theorem 12 is small unless π is very close to

0, even for test sets of a moderate size. For example, setting π := 0.5 appears
a reasonable compromise between the two terms involving π in the price of
protection and in (12), and we will use it in our experiments in the next section.

The value J ′ introduced in (13) is an alternative parameterization of the
jumping rate (and it is used in, e.g., [20] as the main one); it is usually close to
(or at least has the same order of magnitude as) J . We may call J ′ the effective
jumping rate: it is the probability that the state actually changes at a given
step.

The regret term in the last two lines of (12) can be interpreted as follows.
First, it gives the degree to which we are competitive with an “oracular” pre-
dictive system that knows in advance which calibration function should be used
at each step. We have already discussed the addend log 1

1−π , and log |J| is the
price, typically very moderate (log 3 in our experiments), that we pay for using
several jumping rates. The following two addends in the regret term give us the
price, in terms of the log loss, for each switch. Namely, each switch costs us
log(|Θ| − 1) (which is log 8 or log 20 in our experiments) plus an amount that
depends on the switching rate, namely log 1

J′ . The last term in (12) is close,
assuming k � n and J ′ � 1, to nJ ′. A reasonable choice of J ′ is the inverse
1/N of the expected number N of observations in the test set (but remember
that Algorithm 2 covers a range of J , which is motivated by N typically not
being known in advance). With this choice the price log 1

J′ to pay per switch
becomes logN .
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Remark 4. The Markov chains usually used in tracking the best expert (see,
e.g., [20, Section 3.3]) choose the first state randomly with equal probabilities,
whereas our Simple Jumper Markov chain starts from the neutral state 0 ∈
Θ. This expresses the “presumption of innocence” towards the base predictive
system: we do not calibrate it unless calibration is needed (and we definitely do
not calibrate it at the very beginning of the test set). The two approaches lead
to extremely similar results in our experiments.

5 Experimental results

There are not many datasets suitable for our experiments. First, they should
be ordered chronologically (to fit the scenario of Section 1), or at least con-
tain timestamps for all observations. And second, they should not be of the
time-series type, so that applying typical machine-learning prediction algorithms
(such as those implemented in scikit-learn) makes sense.

Our main dataset will be Bank Marketing (the only dataset in the top twelve
most popular datasets at the UC Irvine Machine Learning Repository that sat-
isfies our requirements; we will use, however, the full version of this dataset
as given at the openml.org repository, which is easier in scikit-learn). The
dataset consists of 45,211 observations representing telemarketing calls for sell-
ing long-term deposits offered by a Portuguese retail bank, with data collected
from 2008 to 2013 [14]. The labels are 1 or 2, which we encode as 0 and 1,
respectively (and we will never mention the original labels again in this paper).
Label 1 indicates a successful sale, and such observations comprise only 12% of
all labels.

The observations are listed in chronological order. We take the first 10,000
observations as the training set, normalize the attributes of the objects using
StandardScaler in scikit-learn (although normalization barely affects our
results), and train Random Forest with default parameters and random seed
2021 on it. (In our figures in this section we use Random Forest as the base
prediction algorithm, since it consistently produces good results in our experi-
ments.) Random Forest often outputs probabilities of success that are equal to 0
or 1, and when such a prediction turns out to be wrong (which happens repeat-
edly), the log-loss is infinite. It is natural, therefore, to truncate a probability
p ∈ [0, 1] of 1 to the interval [ε, 1− ε] replacing p by

p∗ :=


ε if p ≤ ε
p if p ∈ (ε, 1− ε)
1− ε if p ≥ 1− ε,

(14)

where we set ε := 0.01 (in scikit-learn, ε = 10−15, but it appears excessive
to us). The resulting prediction model is our base predictive system. After we
find it, we never use the training set again, and the numbering of observations
starts from the first element of the test set (i.e., the dataset in the chronological
order without the training set).
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Figure 2: Left panel: The Composite Jumper test martingale for the Bank

Marketing dataset and Random Forest. Right panel: The ROC curve for the
Composite Jumper protection.

Table 1: The AUC for the Bank Marketing dataset and key scikit-learn

functions (with default parameters) together with their protected versions.

Prediction algorithm base protected
Random Forest 0.692 0.898
Gradient Boosting 0.734 0.901
Decision Trees 0.564 0.814
Neural Network 0.665 0.879
SVM 0.686 0.844
Naive Bayes 0.646 0.807
Logistic Regression 0.609 0.838

The left panel of Figure 2 shows the trajectory of log10 Sn, n = 1, . . . , 35211,
where Sn is the value of the Composite Jumper test martingale over the test
set with the jumping rates J := {10−2, 10−3, 10−4} and the family (5) with
α ∈ {−1, 0, 1} and β ∈ {0.5, 1, 2}. With this choice of the ranges of α and β,
which we always use in the binary case, there are |Θ| = 9 of parameter vectors
θ := (α, β). The final value of the test martingale in the left panel of Figure 2
is approximately 103231.7.

The right panel of Figure 2 gives the ROC curve for Random Forest and
Random Forest protected by Algorithm 2. We can see that the improvement is
substantial. In terms of the log-loss function and decimal logarithms, the loss
goes down from 7185.1 to 3953.4 (the difference between these two numbers
being, predictably, the exponent 3231.7 in the final value of the test martingale
in the left panel).

Table 1 gives the AUC (area under curve) for Algorithm 2 and several base
prediction algorithms implemented in scikit-learn. Since the dataset is im-
balanced, AUC is a more suitable measure of quality than error rate.
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Figure 3: The ROC curve for the Bank Marketing dataset and Random Forest
with the Composite Jumper protection and feedback provided for every 100th
test observation.
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Figure 4: The analogue of Figure 2 for the electricity dataset.

In our experiments so far we have assumed that every test observation is
used for recalibrating the prediction model. From the practical point of view
this may be unrealistic, and in reality we can only hope to get feedback on a
fraction of the test observations. Figure 3 is the counterpart of the right panel
of Figure 2 for the case where the vast majority of observations are predicted
by the prediction model without getting any feedback, and the weight updates
in Algorithm 2 are run only on every 100th test observation (so that the same
weights P and AJθ are used for the observations 100k+1, 100k+2,. . . , 100k+100
for k = 0, 1, . . . ). Now the improvement is more modest.

Another similar dataset is electricity [7, 9], available from openml.org.
Its 45,312 observations contain binary labels (whether the electricity price in
New South Wales goes up or down, encoded as 1 and 0, respectively) together
with relevant attributes, collected from 7 May 1996 to 5 December 1998. The
observations are listed in the chronological order, as for Bank Marketing, and
we use the same scheme, allocating the first 10,000 observations to the train-
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Table 2: Numbers of errors for the electricity dataset and some
scikit-learn functions (with default parameters) together with their protected
versions.

Prediction algorithm base protected
Random Forest 9184 5846
Gradient Boosting 9165 6009
Decision Trees 9372 6806
Neural Network 14,358 7469
SVM 14,433 9532

ing set and normalizing the attributes with StandardScaler; the figures use
the same base prediction algorithm (Random Forest). Figure 4 shows results
for this dataset; protection still greatly improves the performance of the base
predictions.

Table 2 gives results for Algorithm 2 and several base prediction algorithms
(scikit-learn’s Naive Bayes and Logistic Regression fail on this dataset pro-
ducing inconsistent results). Now the dataset is balanced, and so we report the
numbers of errors (i.e., the cases of the predictions being different from the true
labels).

Multiclass case

Here we work with the UJIIndoorLoc dataset [19], available from the UC Irvine
Machine Learning Repository. The attributes are intensity levels of 520 wireless
access points (WAPs) in three buildings of the Jaume I University in Castelló
de la Plana, Valencia, Spain. The task we are interested in is to identify the
building given the WAP intensity levels. The dataset consists of two parts, a
sizable original training set and a much smaller original validation set (the latter
collected 4 months after the former). Since the attributes that we use are given
on the same scale, there is no need to normalize them.

We consider two scenarios:

� In Scenario 1, we ignore the original validation set and use only the orig-
inal training set, which we order chronologically and then split into the
training set consisting of the first 10,000 observations and the test set con-
sisting of the remaining observations, as we did for Bank Marketing and
electricity.

� In Scenario 2, we use the original training set as our training set and the
original validation set as our test set.

In this multiclass case we truncate a probability measure p = (py) slightly
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Table 3: Numbers of errors in Scenario 1 for the UJIIndoorLoc dataset and key
scikit-learn functions (with default parameters).

Prediction algorithm base protected
Random Forest 556 208
Gradient Boosting 1397 1041
Decision Trees 1185 1185
Neural Network 1289 1261
SVM 354 199
Naive Bayes 43 43
Logistic Regression 290 244

differently from the binary procedure (14); namely, we set

p∗y :=
max(py, ε)∑

y′∈Y max(py′ , ε)
, y ∈ Y (15)

(where Y are the labels standing for the three buildings, |Y| = 3), and we still
set ε := 0.01.

First we report our results for the more difficult Scenario 1. It is interesting
that one of the buildings is not in the test set; it seems that the buildings were
explored systematically. The results for Scenario 1 are given in Table 3, where
β range over {0.5, 1, 2} and α range over the 7 binary vectors of length 3 apart
from (1, 1, 1) (which is not included since the corresponding calibrating function
is the same as for (0, 0, 0)); of course, the neutral calibrating function is the one
with α = (0, 0, 0) and β = 1.

Protection always improves results, sometimes significantly, apart from De-
cision Trees and Naive Bayes, for which the number of errors stays the same,
1185 and 43, respectively. In the case of Decision Trees, the vast majority of
the base predictions are categorical, concentrating on one label, which makes
their calibration problematic. (Namely, 9251 out of 9937 predictions are cat-
egorical, assigning probability 1 to one of the labels; in particular, all wrong
predictions are categorical. The least categorical of the remaining predictions
assigns probability 0.974 to one of the labels.) In the case of Naive Bayes, the
quality of the probabilistic predictions still improves greatly: the log10 loss of
the base predictive system is∞ because the loss is∞ for 8 observations; if those
8 observations are ignored, the log10 loss is 2304.76, whereas the log10 loss of
the protected predictive system is 84.41 (without any infinities).

Scenario 2 is extremely easy (since all three buildings have been explored
completely); e.g., Logistic Regression as implemented in scikit-learn does not
make any errors. For the results, see Table 4. It is reassuring that the number
of errors never goes up as result of protection.
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Table 4: Numbers of errors in Scenario 2 for the UJIIndoorLoc dataset and
scikit-learn functions with default parameters.

Prediction algorithm base protected
Random Forest 2 1
Gradient Boosting 2 2
Decision Trees 21 10
Neural Network 1 1
SVM 4 4
Naive Bayes 9 9
Logistic Regression 0 0

6 Conclusion

The methods of adaptive calibration that we propose in this paper need to be
validated on other datasets and perhaps for other calibrating functions. No-
tice that calibrating functions may depend not only on the current predicted
probability p but also on the current object x. (So that “calibration” may be
understood in a very wide sense, as in [5], and include elements of “resolution”
[6].)

In this paper we only use the log loss function. Arguably it is the most
fundamental one [22], but its disadvantage is that, for many base prediction
algorithms, we need truncation (see (14) and (15)) to prevent an infinite loss.
A popular alternative to the log loss function is the Brier loss function [2]; it
is much more forgiving and does not require truncation. It follows from the
results of [25] that Theorem 3 will continue to hold when the log loss function
is replaced by the Brier loss function. Empirical studies of the performance of
our procedures in this case are an interesting direction of further research.

A useful feature of our procedure of protection is that it is cheap, which is
achieved by mixing Simple Jumper martingales with constant 1: see (3). The
role of mixing with 1 is to insure against a catastrophic loss of evidence against
the null hypothesis (given by the base predictive system) found by those test
martingales. There are much more sophisticated ways of insuring against loss
of evidence [17, Chapter 11], and they will provide further protection.
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Avariento, Tomás J. Arnau, Mauri Benedito-Bordonau, and Joaqúın
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A Some proofs

The second statement of Theorem 3 can be deduced from the fact that the
probability process of the Bayes mixture is equal to the average of the elementary
predictors’ probability processes with respect to the prior probability measure
on the elementary predictors. This can be checked directly and is a special case
of a known result for the AA specialized to the log loss function. In the context
of this special case of the AA, a probability process is a process of the form
exp(−L), where L is a loss process. The following lemma is the main property
of the AA in this context.

Lemma 5. The probability process of the AA with the log loss function is the
average of the elementary predictors’ probability processes with respect to the
prior probability measure.

Proof. For a proof, see [21, Lemma 1].

Proof of Theorem 3

Let us first prove that the price of protection is log 1
π . It is obvious that it does

not exceed log 1
π , and it suffices to prove that, for any J ∈ J, the likelihood

ratio of the Simple Jumper predictor with jumping rate J to the base predictive
system tends to 0 for some sequence of observations. We will prove more:
namely, for a suitable choice of the base predictive system, the likelihood ratio
of the Simple Jumper predictor with jumping rate J to the base predictive
system tends to 0 a.s. under the probability distribution of the base predictive
system.

By the ergodic theorem for Markov chains (see, e.g., [15, Theorem 1.10.2])
the Simple Jumper Markov chain will spend, asymptotically and almost surely,
the fraction 1/ |Θ| of its time in each state θ ∈ Θ. Choose a p such that fθ(p) 6= p
for some θ ∈ Θ. Let the base predictive system always output p. By Kabanov
et al.’s criterion (see, e.g., [18, Theorem 4]) of mutual singularity of probability
measures in “predictable terms”, the Simple Jumper predictive system with
jumping rate J and the base predictive system will be mutually singular. This
implies (by [18, Theorem 2]) that, indeed, the likelihood ratio of the Simple
Jumper to the base predictive system tends to 0 a.s.

To complete the proof of Theorem 3, notice that the probability that the Sim-
ple Jumper Markov chain with a given jumping rate J ∈ J produces θ1, . . . , θn
with k switches as its first n states is(

J ′

|Θ| − 1

)k
(1− J ′)n−k−1.

Therefore, the protected probability process is at least

1− π
|J|

(
J ′

|Θ| − 1

)k
(1− J ′)n−k−1
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Figure 5: The ROC curves for the Bank Marketing (left panel) and
electricity (right panel) dataset and Random Forest with the Composite
Jumper protection based on quadratic calibration.
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Figure 6: The analogue of Figure 2 for the Bank Marketing dataset with ran-
domly permuted objects.

times the probability process for any elementary predictor with jumping rate J
and the sequence of states beginning with θ1, . . . , θn. It remains to convert the
probability processes into log loss processes by applying the operation − log.

B Further experimental results

We start this appendix from reporting results for the family (1) of quadratic
calibrating functions with θ restricted to a finite set Θ. As always, we choose
a minimal Θ, namely Θ := {−1, 0, 1}. Figure 5 is the counterpart of the right
panels of Figures 2 and 4 for this family. In the rest of the paper we only
consider Cox’s calibrating functions.

Next we discuss some of the reasons for a good performance of our protection
procedures on the Bank Marketing and electricity datasets. It is revealing
that protection still gives good results for both datasets when the objects are
randomly shuffled (so that they become uninformative). See Figures 6 and 7.
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Figure 7: The analogue of Figure 4 for the electricity dataset with randomly
permuted objects.
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Figure 8: The moving averages of the labels for the Bank Marketing (left panel)
and electricity (right panel) datasets, as described in text.

Therefore, already the order of the test labels is informative. Of course, the
ROC curves for the unprotected procedures become trivial (close to the main
diagonal) when the objects are shuffled.

To understand the reasons for the ROC curves being non-trivial after pro-
tection in Figures 6 and 7, we compute the moving averages of the labels for the
two datasets (including both training and test sets). Figure 8 shows in red the
trajectories of the moving averages of the labels: the value of each trajectory at
time n is the arithmetic mean of the 1000 consecutive labels starting from yn
(namely, the arithmetic mean of yn, . . . , yn+999). For comparison, the analogous
moving average for a simulated IID binary sequence with the right percentage
of 1s (12% for Bank Marketing and 42% for electricity) is shown in green.

The behaviour of the moving average is particularly anomalous for Bank

Marketing: the proportion of successful calls increases drastically towards the
end of the dataset, which explains the quick growth of the Composite Jumper
martingale in Figures 2 and 6 starting from approximately the 30,000th obser-
vation in the test set, which corresponds to the 40,000th observation in the full
dataset. The percentage of successful calls is 3.5% for the training set and 14.0%
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Figure 9: The Simple Jumper martingales for various jumping rates for the Bank
Marketing (left panel) and electricity (right panel) datasets, as described in
text.
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Figure 10: The ROC curves for the Bank Marketing dataset and Random Forest
with the Simple Jumper protection for the jumping rate J := 10−2 on the left
and J := 10−4 on the right.

for the test set. The behaviour for electricity is less anomalous, but there
are still clear non-random patterns.

Dependence on the jumping rate

The left panel of Figure 9 shows the dependence of the Simple Jumper martin-
gale (with the same parameters as in the left panel of Figure 2) on the jumping
rate for the Bank Marketing dataset; the dependence is slight, at least on the
log scale. The right panel is its counterpart for the electricity dataset; the
dependence on the jumping rate is more noticeable.

The dependence of the resulting ROC curves on the jumping rate is also
weak: see, e.g., Figure 10, which shows results for the jumping rates 0.01 and
0.0001. However, using a specific value of the jumping rate J may be risky
in that the Simple Jumper test martingale loses capital exponentially quickly
if the base prediction algorithm is already ideal; this will make the insurance
policy discussed in Section 1 expensive both for testing and for prediction. A

20



0 5000 10000 15000 20000 25000 30000 35000

0

500

1000

1500

2000

2500
lo

g1
0 

te
st

 m
ar

tin
ga

le
s

jumping rate: 0.01
jumping rate: 0.001
jumping rate: 0.0001

0 5000 10000 15000 20000 25000 30000 35000
0

200

400

600

800

1000

lo
g1

0 
te

st
 m

ar
tin

ga
le

s

jumping rate: 0.01
jumping rate: 0.001
jumping rate: 0.0001

Figure 11: The Simple Jumper martingales for the Bank Marketing and
electricity dataset with randomly permuted objects.
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Figure 12: Left panel: The ROC curve for the electricity dataset and Ran-
dom Forest with the Composite Jumper protection and feedback provided for
every 100th test observation. Right panel: the counterpart of the left panel for
feedback provided for every 10th observations.

safer option is to use the Composite Jumper procedures, as we do in the main
paper.

Figure 11 showing the Simple Jumper martingales for various jumping rates
is interesting because of the striking difference between the Bank Marketing

and electricity datasets with randomly permuted objects.

Limited feedback

The left panel of Figure 12 is the counterpart for the electricity dataset of
Figure 3: feedback is provided only for every 100th test observation. Now pro-
tection with limited feedback results only in marginal improvement in the AUC
for the ROC curve. With the fuller feedback comprising every 10th test obser-
vation the improvement is again substantial: see the right panel of Figure 12.
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Figure 13: Left panel: The number of errors made by Random Forest on the
electricity dataset with added prehistory. Right panel: The ROC curve for
the electricity dataset with prehistory of 48 and Random Forest with the
Composite Jumper protection.
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Figure 14: The Simple Jumper martingales for the UJIIndoorLoc dataset (Sce-
nario 1) and Random Forest.

The time-series aspects of the electricity dataset

Unlike the two other datasets considered in this paper, the electricity dataset
consists of periodic observations referring to a period of 30 minutes, so that there
are 48 instances for each time period of one day. Therefore, complementing the
existing attributes of each observation by a prehistory, i.e., the labels of a given
number (the size of prehistory) of immediately preceding observations, may
improve the predictions. The left panel of Figure 13 shows that this is indeed
the case. The right panel of Figure 13 shows the improvement in the ROC curve
for the prehistory of size 48 (one day).
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Multiclass case

Figure 14 gives the trajectories of the three components of the Composite
Jumper martingale with J = {10−2, 10−3, 10−4} and Θ = ({0, 1}3 \{(1, 1, 1)})×
{0.5, 1, 2} (as before) based on Random Forest for the UJIIndoorLoc dataset in
Scenario 1. On the log scale, the three components do not appear vastly differ-
ent, but the final value for the jumping rate 0.001 is more than 106 times larger
than the final value for the jumping rate 0.01. The trajectory (not shown) for
the Composite Jumper martingale with these jumping rates and π = 0.5 is visu-
ally indistinguishable from the highest of the three trajectories that are shown
(the one for the jumping rate 0.001).
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