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Abstract

In this paper we study the validity and efficiency of a conformal version of the
CUSUM procedure for change detection both experimentally and theoretically.
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1 Introduction

One of the most popular methods for change detection is Page’s [9] CUSUM
procedure; see [10, Chap. 6] for a modern exposition. The CUSUM procedure
has been shown to be optimal in some important senses, including Lorden’s
[7, 8] worst-case definition and Ritov’s [11] game-theoretic definition.

The basic setting in which the optimality of CUSUM has been shown is where
the pre-change and post-change distributions are known, and the only unknown
is the time when the change happens (the changepoint). The conformal CUSUM
procedure, introduced in [14] and discussed in detail in [15, Chap. 8], only as-
sumes that the pre-change data distribution is IID (the pre-change observations
are independent and identically distributed).

In [15, Chap. 8] we only discussed the validity of the conformal CUSUM
procedure, meaning the frequency of false alarms (i.e., alarms raised before the
changepoint) being bounded (at least with a high probability) by a specified
constant. Another desideratum for the conformal CUSUM procedure is its effi-
ciency : we would like an alarm to be raised soon after the changepoint. We did
not investigate the efficiency of our change detection procedures in [15] since the
task of proving efficiency is in a sense too ambitious [15, Sect. 8.6.3]: conformal
testing may be based on powerful algorithms, such as deep neural networks,
involving elements of intelligence, and there is little hope of guaranteeing their
efficiency.

In this paper we investigate the efficiency of conformal change detection in
a very roundabout way, which is an instance of what we called the Burnaev–
Wasserman programme in [15, Sect. 2.5]. Suppose we model our observations
as coming in the IID fashion from a distribution Q0 before the changepoint and
from another distribution Q1 after the changepoint. This is, however, a “soft
model”: we do not want the validity of our procedure to depend on it. The soft
model provides us with a means of establishing the efficiency of our procedure:
the efficiency is measured under this model.

We started implementing this programme in the easier case of conformal
e-testing in [16]. In this paper we extend it to conformal testing, which has
important advantages over conformal e-testing [16, Sect. 7].

We start the main part of this paper from a description of the conformal
CUSUM procedure in Sect. 2. The conformal CUSUM procedure is determined
by a threshold and an underlying conformal test martingale, and the latter
is in turn determined by its underlying nonconformity measure and betting
martingale. We define asymptotically optimal, in a natural sense, nonconformity
measure and betting martingale in Sect. 3. The betting martingale consists in
applying the same betting function at each step, and the betting function is
explicitly computed in two popular special cases (both involving the Gaussian
model) in Sect. 4. An experimental section, Sect. 5, illustrates the efficiency of
the asymptotically optimal conformal CUSUM procedure that we derive in the
previous sections, and Sect. 6 is an attempt of a theoretical analysis. Finally,
we summarize and list some directions of further research in Sect. 7.

In this paper we will refer to the assumption that the observations are IID
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as the assumption of randomness. By de Finetti’s theorem this assumption is
equivalent to that of exchangeability for observations taking values in a standard
Borel space.

2 Conformal and standard CUSUM procedures

Let S be a conformal test martingale (CTM) as defined in [15, Sect. 8.1.2]; for
simplicity we will assume that it is positive, S > 0. For a given threshold c > 1,
the conformal CUSUM procedure raises the kth alarm, k = 0, 1, . . . , at the time

τk := min

{
n > τk−1 : max

i=τk−1...,n−1

Sn

Si
≥ c

}
, (1)

where τ0 := 0 and min ∅ := ∞. A universally applicable but conservative
property of validity of the conformal CUSUM procedure is that

E(τk − τk−1) ≥ c (2)

for IID observations. This implies (albeit not trivially) that, under randomness,

lim sup
n→∞

An

n
≤ 1

c
a.s., (3)

where An := max{k : τk ≤ n} is the number of alarms raised by the conformal
CUSUM procedure by time n.

Next, with a view towards the Burnaev–Wasserman programme, we consider
the standard CUSUM procedure. Let us use the notation of [16]: the observation
space is Z (a measurable space), the pre-change distribution is Q0, and the post-
change distribution is Q1. Let f0 be the probability density of the pre-change
distribution Q0 and f1 be the probability density of the post-change distribution
Q1 with respect to some σ-finite measure m (such as m := Q0 + Q1). The
likelihood ratio is

L(z) :=
f1(z)

f0(z)
, z ∈ Z; (4)

for simplicity we will assume that both f0 and f1 are positive, so that L ∈ (0,∞).
The corresponding likelihood ratio martingale (LRM) is

Sn :=

n∏
i=1

L(zi), n = 0, 1, . . . . (5)

The standard CUSUM procedure corresponding to a threshold c > 1 and the
pre-/post-change distributions (Q0, Q1) is defined by (1), where S is the LRM
(5).

The standard CUSUM procedure satisfies the properties of validity, (2) and
(3), that we mentioned earlier for the conformal CUSUM procedure. As we also
mentioned earlier, these properties of validity are very conservative for CUSUM
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(since, as shown in, e.g., [15, Chap. 4], they are also applicable to the Shiryaev–
Roberts procedure, which raises many more alarms). A possible solution is to
use computer simulations to find a suitable value of the threshold c for a given
target value for the frequency of false alarms (as in [15, Sect. 8.4.3], where we
also find confidence intervals for the frequency of false alarms). Many important
pairs (Q0, Q1) of pre-/post-change distributions are even amenable to theoretic
analysis, and it is possible for them to derive very accurate approximations
to the value of c leading to a chosen “ARL2FA” (“average run length to false
alarm”), a standard measure of validity for the standard CUSUM procedure.
In particular, analysis of a discrete-time Gaussian case is performed in [3] (and
described in [1, Sect. 5.2.2.1]; see also [13, Sect. 8.2.6.6]).

We would like to construct a CTM approaching in its validity and efficiency
the LRM when both are plugged into the CUSUM scheme (1). In the next
section we will see that in the case of validity this goal can achieved perfectly (see
Proposition 1). In the case of efficiency, our results are much weaker (Sections 5
and 6).

3 Asymptotically optimal CTM

First we briefly give a general definition, which we then specialize to the more
intuitive case of a finite observation space Z. This specialization will allow us
to justify our definition in a simple setting.

An asymptotically optimal betting function f : [0, 1] → [0,∞) for the pair
(Q0, Q1) of the pre-/post-change distributions is defined by the condition

Q0({z : L(z) > f(p)}) ≤ p ≤ Q0({z : L(z) ≥ f(p)}),

required to hold for any p ∈ [0, 1]. In other words, it is defined to be an inverse
function of the survival function F̄ (t) := Q0({z : L(z) > t}) of the likelihood
ratio L under Q0 [2, Definition A.18]. This function is always decreasing (not
necessarily strictly decreasing).

The canonical asymptotically optimal (CAO) betting function f is defined
to be the largest function in this class, i.e.,

f(p) := inf{t : F̄ (t) < p} = sup{t : F̄ (t) ≥ p}.

In other words, the CAO betting function is the left-continuous inverse func-
tion of the survival function F̄ (adapt [2, Lemma A.19] to the case of a de-
creasing function). Equivalently, the CAO betting function can be defined by
f(p) = F−1(1− p), where F−1 is the upper quantile function of the cumulative
distribution function F of L under Q0.

Let us now assume that the observation space Z is finite; we will drop the
curly braces in the notation such as Q0({z}) for z ∈ Z. To specialize the general
definition to the case of a finite Z, sort the likelihood ratios

L(z) = Q1(z)/Q0(z)
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(cf. (4)) in the ascending order. Let the resulting unique values for L(z) be l1 <
· · · < lK . Set qk := Q0({z : L(z) = lk}) for k = 1, . . . ,K. An asymptotically
optimal betting function f : [0, 1] → [0,∞) is defined by f(p) := lk for any
p ∈ [0, 1], where k is defined by the condition

qk+1 + · · ·+ qK ≤ p ≤ qk · · ·+ qK (6)

(this condition does not define k uniquely if p has the form qj + · · · + qK for
some j ∈ {2, . . . ,K}, but the probability of a uniformly distributed p ∈ [0, 1]
having this form is zero).

Let us check that the term “asymptotically optimal” is indeed justified. Let
N0 be the number of pre-change observations. Consider a very large N0 (so that
we are talking about the asymptotics N0 → ∞) and a fixed n (or n bounded
above by a fixed constant). Take the likelihood ratio L(z) as the nonconformity
score of an observation z. The conformal p-value at the (N0 + n)th step is

pN0+n =
|{i : Li > LN0+n}|+ τ |{i : Li = LN0+n}|

N0 + n
≈ qk+1+· · ·+qK+τqk, (7)

where i ranges over {1, . . . , N0 + n}, τ ∈ [0, 1] is a random number, and k
is defined by the condition lk = LN0+n. Since n is fixed and N0 → ∞, we
can assume that i ranges over {1, . . . , N0} and replace N0 + n by N0 in the
denominator of (7). The approximate equality “≈” in (7) then follows from the
law of large numbers (with a large probability). The asymptotically optimal
betting function takes value lk at this p-value by its definition (see (6)), as it
should (if we regards the LRM as being optimal).

An asymptotically optimal CTM is a CTM based on an asymptotically opti-
mal betting function f and on likelihood ratio L as nonconformity measure. It
is the CAO CTM if f is the CAO betting function. The following proposition
says that the conformal CUSUM procedure based on the CAO CTM, or any
other asymptotically optimal CTM, is perfectly valid.

Proposition 1. For any pair (Q0, Q1) of pre-/post-change distributions, the
distribution of the likelihood ratio martingale under Q∞

0 coincides with the dis-
tribution of any asymptotically optimal CTM under randomness (not necessarily
under Q∞

0 ).

Proof. Let S be the LRM and S̄ be an asymptotically optimal CTM based
on (Q0, Q1). The relative increments Sn/Sn−1, n = 1, 2, . . . , are independent
because the observations are independent, and the relative increments S̄n/S̄n−1,
n = 1, 2, . . . , are independent because the conformal p-values are independent
[15, Theorem 11.1]. Therefore, it suffices to prove that, for a fixed n, Sn/Sn−1

and S̄n/S̄n−1 have the same distribution (the former under Q∞
0 and the latter

under randomness). The former’s distribution is the pushforward of Q0 by the
likelihood ratio mapping (4). The latter’s distribution is identical by definition
and [2, Lemma A.23].
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According to Proposition 1, the conformal CUSUM procedure satisfies the
same properties of validity as the standard CUSUM procedure but under radi-
cally weaker assumptions: instead of assuming Q∞, we just assume randomness.
In particular, we can use the whole arsenal of the existing results in the stan-
dard theory of change detection to find a suitable threshold c for the CUSUM
procedure. (See the mini-review at the end of Sect. 2.) Alternatively, we can
use computer simulations, as in [15, Sect. 8.4.3].

Proposition 1 demonstrates a significant advantage of the conformal CUSUM
procedure over the conformal CUSUM e-procedure; it is unlikely that anything
similar to Proposition 1 can be proved for the conformal CUSUM e-procedure,
since we know the distribution of the conformal p-values (it is uniform in [0, 1]∞)
but not of conformal e-values.

4 Computing the CAO betting function in pop-
ular special cases

Now we take the observation space to be the real line R, Z = R, and take m
to be Lebesgue measure; we still assume that the pre-change and post-change
distributions are absolutely continuous w.r. to m with positive probability den-
sities. As before, f0 is the probability density of the pre-change distribution
Q0 and f1 is the probability density for the post-change distribution Q1. The
likelihood ratio is defined by (4), where now z ∈ R.

The special cases for which we will compute the CAO betting function in this
section will all involve the Gaussian statistical model. First let us assume that
the pre-change distribution is Q0 := N(0, 1) and the post-change distribution
is Q1 := N(µ, 1). For concreteness, let us assume µ > 0 (this does not really
restrict generality because of symmetry). The likelihood ratio is

L(z) = exp(µz − µ2/2).

Solving the inequality L(z) ≥ l for l ∈ (0,∞), we obtain the optimal Neyman–
Pearson region

z ≥ ln l

µ
+

µ

2
. (8)

Its probability under Q0 (i.e., the type I error probability of the corresponding
statistical test) is

p = P
(
Z ≥ ln l

µ
+

µ

2

)
= 1− Φ

(
ln l

µ
+

µ

2

)
,

where Z ∼ N(0, 1) and Φ stands for the distribution function of N(0, 1). Ex-
pressing l in terms of p, we obtain the betting function

f(p) = l = exp
(
µΦ−1(1− p)− µ2/2

)
, (9)
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Φ−1 being the inverse function of Φ (i.e., Φ−1 is the quantile function ofN(0, 1)).
If µ < 0, we should replace the “≥” in (8) by “≤”, which leads to

f(p) = l = exp
(
µΦ−1(p)− µ2/2

)
(10)

in place of (9). (We can also see that (9) implies (10) by the symmetry between
p and 1− p.)

Next we consider the case where the pre-change distribution is N(0, 1) and
the post-change distribution is N(0, σ2). The likelihood ratio is

L(z) =
1

σ
exp

(
(1− 1/σ2)z2/2

)
.

Let us first assume σ > 1 (the observations are becoming more spread out after
the changepoint). Then L(z) ranges over [1/σ,∞). Solving L(z) ≥ l for l ≥ 1/σ
gives the optimal Neyman–Pearson region(

−∞,−

√
2 ln(lσ)

1− 1/σ2

]
∪

[√
2 ln(lσ)

1− 1/σ2
,∞

)
. (11)

The type I error probability is

p = P

(
Z ∈

(
−∞,−

√
2 ln(lσ)

1− 1/σ2

]
∪

[√
2 ln(lσ)

1− 1/σ2
,∞

))

= 2N

(
−

√
2 ln(lσ)

1− 1/σ2

)
. (12)

For the change N(0, 1) → N(0, σ2) for σ > 1, (12) gives

f(p) = l =
1

σ
exp

(
1− 1/σ2

2

(
Φ−1(p/2)

)2) ∈ [1/σ,∞) . (13)

Similarly, we get

f(p) = l =
1

σ
exp

(
1− 1/σ2

2

(
Φ−1((1− p)/2)

)2) ∈ (0, 1/σ] (14)

for σ < 1; this is obtained by replacing the optimal Neyman-Pearson region (11)
by its complement.

There is a convenient equivalent definition of the CAO betting function that
sometimes leads to nicer and more intuitive mathematical expressions. For each
threshold l ∈ (0,∞), find, alongside the type I error probability

p0(l) :=

∫
z:L(z)≥l

f0(z)dz ∈ [0, 1], (15)

the probability

p1(l) :=

∫
z:L(z)≥l

f1(z)dz ∈ [0, 1] (16)

6



(this is the power, or 1 minus the type II error probability). Let us assume, for
simplicity, that the functions p0 and p1 defined by (15) and (16) are continuous
and strictly increasing over some interval. (These conditions are satisfied in the
examples considered in this section.) The Neyman–Pearson ROC curve R for
the pair (Q0, Q1) (with Q0 interpreted as null hypothesis and Q1 as alternative)
is defined to be p1 as function of p0:

R(p) := sup{p1(l) : p0(l) = p}.

This definition is motivated, of course, by the Neyman–Pearson lemma [6,
Sect. 3.2].

Proposition 2. The Neyman–Pearson ROC curve R is differentiable, and the
CAO betting function f is equal to its derivative, f = R′.

Another way to express Proposition 2 is: the CAO betting function f is equal to
the minus derivative of the type II error probability 1−p1 expressed as function
of the type I error probability p0.

Proof of Proposition 2. Under our assumptions, as ∆l → 0,

dp1
dp0

(l) ∼ p1(l +∆l)− p1(l)

p0(l +∆l)− p0(l)

=

∫
z:L(z)∈[l,l+∆l]

L(z)f0(z) dz
/∫

z:L(z)∈[l,l+∆l]

f0(z) dz ∼ l.

Proposition 2 gives more intuitive expressions for the CAO betting functions
discussed so far. Start, again, from the change N(0, 1) → N(µ, 1) for µ > 0.
The probability of (8) under Q1 (i.e., the power) is

p∗ = P
(
Z + µ ≥ ln l

µ
+

µ

2

)
= 1− Φ

(
ln l

µ
− µ

2

)
.

(So that now we are writing p for p0 and p∗ for p1.) Expressing p∗ via p, we
obtain the Neyman–Pearson ROC curve

R(p) = p∗ = 1− Φ(Φ−1(1− p)− µ).

Differentiating this function gives the optimal betting function

f(p) = R′(p) =
ϕ(Φ−1(1− p)− µ)

ϕ(Φ−1(1− p))
, (17)

where ϕ is the probability density of N(0, 1). It is easy to check that the ex-
pression (17) is equivalent to our previous expression (9). If µ < 0, replacing
the “≥” in (8) by “≤” gives

f(p) = R′(p) =
ϕ(Φ−1(p)− µ)

ϕ(Φ−1(p))
(18)
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in place of (17); the last expression is again equivalent to (10).
We can interpret the betting functions (17) and (18) as likelihood ratios.

For example, (17) is the likelihood ratio of the alternative hypothesis Q1 to the
null hypothesis Q0 after transforming the observed p-value p to the Gaussian
scale Φ−1(1− p).

In the case N(0, 1) → N(0, σ2) with σ > 1, the power is

p∗ = P

(
σZ ∈

(
−∞,−

√
2 ln(lσ)

1− 1/σ2

]
∪

[√
2 ln(lσ)

1− 1/σ2
,∞

))

= 2N

(
− 1

σ

√
2 ln(lσ)

1− 1/σ2

)
.

Therefore, the Neyman–Pearson ROC curve is

R(p) = p∗ = 2N

(
1

σ
Φ−1(p/2)

)
,

and differentiation gives the betting function

f(p) = R′(p) =
ϕ
(
1
σΦ

−1(p/2)
)

σϕ(Φ−1(p/2))
. (19)

The formula for the betting function for the case σ < 1 is

f(p) = R′(p) =
ϕ
(
1
σΦ

−1((1− p)/2)
)

σϕ(Φ−1((1− p)/2))
; (20)

as usual, it is obtained by replacing (11) by its complement. Of course, (19)
and (20) are equivalent to (13) and (14), but the former look more natural.

Remark 3. The conformal test martingales based on the CAO betting functions
developed in this section can be integrated over a probability measure on the
parameter (the post-change mean µ or the post-change standard deviation σ).
This allows us to achieve good performance for wider ranges of post-change
distributions.

Remark 4. We can’t easily combine the two Gaussian cases that we have consid-
ered, N(0, 1) → N(µ, 1) and N(0, 1) → N(0, σ2), into the case of the pre-change
distribution being N(0, 1) and the post-change distribution being N(µ, σ2). The
general case of a change in both location and scale parameters does not appear
to admit a simple closed-form solution.

5 Efficiency and validity: Experimental results

In this section we will report some experimental results for conformal CUSUM
procedures and, for comparison, conformal CUSUM e-procedures considered in
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Figure 1: Left panel: the likelihood ratio martingale, conformal e-pseudomartin-
gale, and conformal test martingale, as described in text, in the Bernoulli case
(with the parameter equal to 0.5 pre-change and 0.6 post-change). Right panel:
the corresponding CUSUM statistics.

[16]. The latter are based on universal e-values

En :=
Ln

1
n (L1 + · · ·+ Ln)

, (21)

where Ln := L(zn), and no further tuning to Q0 and Q1 (like choosing the
betting functions in the case of conformal testing) is needed. We omit the
details referring the reader to [16].

Experimental results for Bernoulli observations are given in Fig. 1. The first
N0 := 1000 observations z1, . . . , zN0

are generated from the Bernoulli distribu-
tion with parameter 0.5 and another N1 := 1000 observations zN0+1, . . . , zN0+N1

from the Bernoulli distribution with parameter 0.6. The changepoint 1000 is
shown as a dashed vertical line. The left panel of Fig. 1 shows three paths:

� the likelihood ratio martingale L1 . . . Ln, n = 0, 1, . . . , N0 +N1, in blue;

� the conformal e-pseudomartingale E1 . . . En, n = 0, 1, . . . , N0 + N1, in
orange, with the conformal e-values defined as the normalized Ln: see
(21);

� the CAO conformal test martingale in green; as the green line was drawn
after the orange line and the two lines are very close, the green line often
obscures the orange one.

The right panel shows the corresponding CUSUM statistics S∗
n of these processes

defined as
S∗
n := Sn/min(S0, . . . , Sn−1),

Sn being the original process. The CAO betting function is, according to the
definition above,

f(p) :=

{
1.2 if p ≤ 0.5

0.8 otherwise.
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Figure 2: Left panel: the three processes as in Fig. 1, but with a change from
N(0, 1) to N(0.2, 1). Right panel: the corresponding CUSUM statistics.
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Figure 3: Left panel: the three processes as in Fig. 1, but with a change from
N(0, 1) to N(0, 1.1). Right panel: the corresponding CUSUM statistics.

In Fig. 1 we can clearly see a phenomenon that we called decay in [15,
Sect. 8.4]: when testing the assumption of randomness (the orange and green
lines), the new distribution Q1 will gradually become the “new normal” after
the changepoint, and the growth of the CTM will slow down or stop. Of course,
there is no decay for the blue line. Decay is inevitable when testing randomness,
and by itself it does not indicate any inefficiency.

Figure 2 is the analogue of Fig. 1 for a change in mean for a Gaussian
distribution. Now the first N0 := 1000 observations are generated from N(0, 1)
and the other N1 := 1000 from N(0.2, 1). The orange and green lines are
remarkably close to each other in the right panel (and this remains true even if
we vary the seed of the random number generator; for other seeds, of course, the
blue line does not show any signs of decay, which is an artefact of our default
choice of “42” as seed).

Figure 3 is the analogue of Figures 1 and 2 for a change from N(0, 1) to
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Figure 4: Left panel: the three processes as in Fig. 1, but with a change from
N(0, 1) to N(0, 0.9). Right panel: the corresponding CUSUM statistics.

N(0, 1.1). The orange and green lines are still fairly close in the right panel.
And finally, Fig. 4 is the analogue for a change from N(0, 1) to N(0, 0.9). We
use the expressions (9), (13), and (14) for the CAO betting functions (but of
course using (17), (19), and (20) would have led to the identical results).

We will finish this section by exploring the validity of the conformal CUSUM
procedure. It might appear that there is a contradiction between Proposition 1
and the left panels of Figures 3 and 4: those panels seem to suggest that the
stochastic behaviour of the LRM and the CAO CTM is very different before
the changepoint. In the rest of this section we will see that, despite the fre-
quent remarkably different behaviour of the LRM and the CAO CTM before
the changepoint on the same dataset, their distributions are very close to each
other (and we know from Proposition 1 that they are even identical), and both
are typically close to the distribution of the conformal e-pseudomartingale (for
which we do not have a theoretical explanation at this time).

Figure 5 demonstrates the closeness in two cases shown in its two panels.
We perform 10,000 simulations of 1000 observations from a pre-change distri-
bution computing the final values of three processes. The boxplots in the figure
show the median (as the orange middle line with notches showing its default
Matplotlib confidence limits), the first and third quartiles (as the lower and
upper sides of the boxes), and the 5% and 95% quantiles (as the whiskers) of
the decimal logarithms of the three processes. The left panel is for the Bernoulli
case with the same parameters as before (0.5 pre-change and 0.6 post-change),
and the right panel is for the Gaussian case with a change in mean with the
same parameters (N(0, 1) pre-change and N(0.2, 1) post-change). There is no
changepoint, and we only generate N0 := 1000 observations from the pre-change
distributions. The boxplots in each panel are given in this order: the LRM, the
CAO CTM, and the conformal e-pseudomartingale (CeP). All three boxplots
are very close in each of the two panels.

Figure 6 is the analogue of Fig. 5 for the upward and downward change in
the variance of the standard Gaussian distribution generating the data, again

11
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Figure 5: Left panel: the validity for the Bernoulli case. Right panel: the
validity for the Gaussian case with a change in mean. As described in text,
with 10,000 simulations.

with the same parameters as before. While the first two boxplots are still very
close to each other (as they must be by Proposition 1), the boxplot for confor-
mal e-pseudomartingale looks visibly different. Figure 7 gives a more extreme
example of broken validity. In it, the pre-change distribution is Bernoulli with
parameter 0.1 while the post-change distribution is Bernoulli with parameter
0.9; the number of observations is N0 := 100.

6 Efficiency: Theoretical analysis

In this section we report a simple preliminary theoretical result about the effi-
ciency of conformal testing in the context of change detection. We only consider
the Bernoulli case.

Theorem 5. Consider the Bernoulli case with the pre-change parameter θ0 and
post-change parameter θ1. Let B be given by

B :=

∣∣∣∣ln θ1(1− θ0)

θ0(1− θ1)

∣∣∣∣
(this is a kind of distance between θ0 and θ1). Let pn be the nth conformal p-value
based on the likelihood ratio nonconformity measure and f be the CAO betting
function. Then, for any ϵ > 0, the log ratio of the likelihood ratio martingale to
the CAO CTM after the changepoint is bounded above as

∀n ∈ {1, . . . , N1} : ln
LN0+1 . . . LN0+n

f(pN0+1) . . . f(pN0+n)

≤ B

ln
2

ϵ
+ 5N1

√
ln 4

ϵ

2N0
+

5

2

N1(N1 + 1)

N0

 (22)
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Figure 6: Left panel: the validity for the Gaussian case with an upward change
in variance. Right panel: the validity for the Gaussian case with a downward
change in variance. The number of simulations is 10,000 in both panels; see the
description in text.

with probability at least 1− ϵ.

Assuming that ln 1
ϵ is only moderately large, the right-hand side of (22) will be

moderately large if N1 has the same order of magnitude as
√
N0 (this is similar

to our conclusion about [16, Proposition 8]).
For a proof of Theorem 5 see Appendix A.

7 Conclusion

In this paper we started implementing the Burnaev–Wasserman programme in
the case of change detection. We showed that the conformal CUSUM procedure
has perfect validity and investigated its efficiency both experimentally and, in
a very basic way, theoretically.

Our secondary goal was to compare conformal testing and conformal e-test-
ing in the context of change detection. These are some advantages of conformal
testing:

� The conformal CUSUM procedure is perfectly valid, as we saw in Proposi-
tion 1. This allows us to find a suitable value of the parameter c for a given
target value of the frequency of false alarms using computer simulations
or existing theoretical results. Proposition 1 also demonstrates the per-
fect validity of the conformal version of the Shiryaev–Roberts procedure,
which is an important competitor of CUSUM. Validity can be violated for
the conformal CUSUM e-procedure, as we saw in Sect. 5 (Fig. 7).

� Conformal testing produces conformal test martingales, which are genuine
martingales, and merging genuine martingales is easy: we can just average
them. This does not work for conformal e-pseudomartingales, while it is

13
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Figure 7: Validity and lack thereof for a Bernoulli case, as described in text
(with 10,000 simulations).

important in change detection (e.g., when we do not have a single post-
change distribution even as our soft model).

This short list complements the analogous list in [16, Sect. 7]. One item on that
list is the need for randomization in conformal testing, which may be regarded
as its disadvantage. Randomization is really harmful if it significantly affects
the outcome of testing; it becomes much more tolerable if (as is often the case)
it is performed repeatedly and the law of large numbers becomes applicable.

These are some open problems and directions of further research along these
lines:

� We saw in Sect. 5 that Proposition 1 does not hold for conformal e-testing
(Fig. 7) but in typical cases (Figures 5–6) the distributions of the final
values for likelihood ratio martingales and conformal e-pseudomartingales
still look similar before the changepoint. Can we prove partial validity
results for conformal e-testing?

� The experimental results in Sect. 5 and Theorem 5 show the closeness
of the CUSUM statistics for the LRM and CAO CTM, but Theorem 5
covers only the Bernoulli case. It would be nice to have more general and
stronger efficiency results.

� Similarly, [16] demonstrated the closeness of the CUSUM statistics for the
LRM and the conformal e-pseudomartingale (21). Those efficiency results
can also be generalized and strengthened.

� In Sect. 5 we observed extreme closeness of the CUSUM statistics for
conformal e-pseudomartingales and conformal test martingales. Is this a
manifestation of a general efficiency result?

14



References
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A Proof of Theorem 5

To compare conformal test martingales with likelihood ratio martingales, we will
use the martingale multiplicative version of the Chernoff bound to be proved in
Appendix B (Theorem 6).

The betting function in Theorem 5 is

f(p) :=

{
θ1
θ0

if p ≤ θ0
1−θ1
1−θ0

otherwise.

We split ϵ into two equal parts of ϵ/2. By Hoeffding’s inequality (see, e.g., [15,
Sect. A.6.3]),

P
(∣∣∣∣K0

N0
− θ0

∣∣∣∣ ≥ δ

)
≤ 2 exp(−2δ2N0),

where K0 is the number of 1s in the first N0 steps. Solving the equation

2 exp(−2δ2N0) =
ϵ

2

gives

δ =

√
ln 4

ϵ

2N0
. (23)

Let us fix the first N0 observations such that∣∣∣∣K0

N0
− θ0

∣∣∣∣ < δ.

We say that step n after the changepoint is anomalous if one of the events
pn ≤ θ0 and zn = 1 happens while the other does not happen. Only if step n
after the changepoint is anomalous can we have LN0+n ̸= f(pN0+n), and even
if that step is anomalous we still have

lnLN0+n − ln f(pN0+n) ≤ B.

Therefore, our proof strategy will consist in bounding the number of anomalous
steps.

The expectation of the number of anomalous steps up to (and including)
step N1 after the changepoint is at most

N1∑
n=1

(
δ +

n

N0

)
= N1δ +

N1(N1 + 1)

2N0
.
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By the martingale multiplicative Chernoff bound (Theorem 6 below),

P
(
A ≥ (1 + ∆)

(
N1δ +

N1(N1 + 1)

2N0

))
≤ exp

(
− ∆2

2 + ∆

(
N1δ +

N1(N1 + 1)

2N0

))
, (24)

where A is the number of anomalous post-change steps and ∆ is a positive
constant. Solving the equation

exp

(
− ∆2

2 + ∆

(
N1δ +

N1(N1 + 1)

2N0

))
=

ϵ

2

in ∆ is equivalent to solving
∆2

2 + ∆
= c, (25)

where

c :=
ln 2

ϵ

N1δ +
N1(N1+1)

2N0

. (26)

Solving the quadratic equation (25) gives

∆ =
c+

√
c2 + 8c

2
≤
√
c2 + 8c ≤ c+ 4.

We set, conservatively, ∆ := c+ 4. According to (24), we have

A < (1 + ∆)

(
N1δ +

N1(N1 + 1)

2N0

)
= (c+ 5)

(
N1δ +

N1(N1 + 1)

2N0

)
with probability at least 1 − ϵ

2 . It remains to plug (26) and then (23) into the
last inequality.

B Martingale multiplicative Chernoff bound

This result was stated and proved in [5, Corollary 6]; we have used it in Ap-
pendix A.

Theorem 6. Fix a filtration (Fn). Suppose (ξn) is a (super)martingale differ-
ence such that ξn take values in {0, 1}, and set θn := P(ξn = 1 | Fn−1). Then,
for any constant s > 0,

Sn :=

n∏
i=1

exp (sξi − θi(e
s − 1)) (27)

is a test supermartingale. For any δ > 0, any N , and any constant µ such that∑N
i=1 θi ≤ µ a.s.,

P

(
N∑
i=1

ξi ≥ (1 + δ)µ

)
≤
(

eδ

(1 + δ)1+δ

)µ

≤ exp

(
− δ2

2 + δ
µ

)
. (28)
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Theorem 6 can be easily stated in terms of game-theoretic probability [12], but
in this paper we prefer the more familiar measure-theoretic statement. Notice
that the left-hand side of (28) can be replaced by

P

(
∃n ∈ {1, . . . , N} :

n∑
i=1

ξi ≥ (1 + δ)µ

)

as ξi ≥ 0. For completeness, we will give a simple proof of Theorem 6.

Proof of Theorem 6. The proof is standard (see, e.g., [4] for a nice exposition).
To check that (Sn) is a supermartingale it suffices to notice that (assuming (ξn)
is a martingale)

E (exp (sξn − θn(e
s − 1)) | Fn−1) = (θne

s + 1− θn) exp (−θn(e
s − 1))

≤ exp (θn(e
s − 1)) exp (−θn(e

s − 1)) = 1,

where the inequality “≤” follows from 1 + x ≤ ex.
This is a derivation of (28):

P

(
N∑
i=1

ξi ≥ (1 + δ)µ

)
= P

(
exp

(
s

N∑
i=1

ξi

)
≥ exp (s(1 + δ)µ)

)

≤ P

(
exp

(
s

N∑
i=1

ξi − (es − 1)

N∑
i=1

θi

)
≥ exp (s(1 + δ)µ− (es − 1)µ)

)
(29)

≤ exp
(
−s(1 + δ)µ+ (es − 1)µ

)
=

(
eδ

(1 + δ)1+δ

)µ

≤ exp

(
− δ2

2 + δ
µ

)
, (30)

where s := ln(1+ δ) > 0. The inequality “≤” in (29) follows from the condition∑N
i=1 θi ≤ µ a.s. The first inequality “≤” in (30) follows from (27) being a test

supermartingale. The equality in (30) follows from s := ln(1 + δ) (which we
obtain by minimizing the expression to the left of the “=” in s). The second
inequality “≤” in (30) follows from

ln(1 + δ) ≥ δ

1 + δ
2

, δ > 0, (31)

applied to the logarithm of the expression on its left-hand side ((31) can be
proved by, e.g., differentiating both sides).
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