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Abstract

This paper continues the study of the efficiency of conformal prediction as com-
pared with more general randomness prediction and exchangeability prediction.
It does not restrict itself to the case of classification, and our results will also
be applicable to the case of regression. The price to pay is that efficiency will
be attained only on average, albeit with respect to a wide range of probability
measures on the label space.
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1 Introduction

Conformal prediction is usually presented as a method of set prediction [10,
Part I], i.e., as a way of producing prediction sets (rather than point predictions).
Another way to look at a conformal predictor is as a way of producing a p-
value function (discussed, in a slightly different context, in, e.g., [4]), which is
a function mapping each possible label y of a test object to the corresponding
conformal p-value. In analogy with “prediction sets”, we will call such p-value
functions “prediction functions”. The prediction set Γα corresponding to a
prediction function f and a significance level α ∈ (0, 1) (our target probability
of error) is the set of all labels y such that f(y) > α. A standard property of
validity for conformal predictors is that Γα makes an error (fails to cover the true
label) with probability at most α; it is implied by the conformal p-values being
bona fide p-values (under suitable assumptions, such as data exchangeability).

The most standard assumption in machine learning is that of randomness
(i.e., the data are assumed to be produced in the IID fashion). This paper
is a development of [8], which introduces the most general class of predictors,
“randomness predictors”, that produce prediction functions that are valid, in
the same sense as conformal predictors, under the assumption of randomness.
There are many more randomness predictors than conformal predictors, and
an interesting question is whether there are randomness predictors that have
significant advantages (e.g., in practice) over conformal predictors. This ques-
tion was answered (albeit imperfectly) in [8] in the case of classification with
few (such as two) classes. In this paper we will be interested in arbitrary label
spaces, including the case of regression. The message of this paper is similar
to that of [8]: the difference between conformal and randomness prediction is
not huge, but it remains an open question whether it can be usefully exploited.
This paper strengthens most of the positive results in [8], but its only negative
result is much weaker (but also simpler) than the negative results of [8].

A useful technical tool in establishing connections between conformal and
randomness predictors is provided by conformal e-predictors [9], which are ob-
tained by replacing p-values with e-values. Conformal e-predictors output e-
value functions f as their prediction functions. Such functions f can also be
represented in terms of the corresponding prediction sets Γα := {y | f(y) < α},
where α ∈ (0,∞) is the significance level (notice that now we exclude the la-
bels with large e-values from the prediction set, which is opposite to what we
did for p-values). However, the property of validity of conformal e-predictors is
slightly more difficult to state in terms of prediction sets: now validity means
that the integral of the probability of error for Γα over α ∈ (0,∞) does not ex-
ceed 1 [9, end of Appendix B]. This implies that the probability of error for Γα

is at most 1/α, but this simple derivative property of validity is much weaker.
Conformal e-predictors are not only a useful technical tool, but we can also

use them for prediction directly. In Glenn Shafer’s opinion [7], e-values are even
more intuitive than p-values. Because of the importance of e-predictors, in the
rest of this paper we will use the word “predictor” in combinations such as
“conformal predictor” and “randomness predictor” generically, including both
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p-predictors (standard predictors based on p-values) and e-predictors (predictors
based on e-values); in particular, we will never drop “p-” in “p-predictor”.

In this paper we will follow the scheme for establishing the closeness of
conformal and randomness predictors used in [8, Figure 1]. Namely, we will
establish connections between:

(a) conformal p-predictors and conformal e-predictors;

(b) conformal e-predictors and exchangeability e-predictors, where the class
of exchangeability e-predictors is intermediate between the conformal e-
predictors and the randomness e-predictors, and it consists of randomness
e-predictors that are valid under the assumption of exchangeability (which
is weaker than the assumption of randomness in the case of finite data
sequences);

(c) exchangeability e-predictors and randomness e-predictors;

(d) randomness e-predictors and randomness p-predictors.

Steps (a) and (d) (converting p-values to e-values and back) are standard, and
we will mainly concentrate on steps (b) and (c).

We start in Sect. 2 from the main definitions, and Sect. 3 is devoted to the
main results. In particular, we establish the efficiency of conformal predictors
among randomness predictors in both p- and e-versions. Namely, the prediction
functions for conformal predictors turn out to be competitive on average with
the prediction functions for any randomness predictors, where “on average”
refers to an arbitrary probability measure that can depend on the test exam-
ple. Sections 4 and 5 give some applications to classification and regression,
respectively, and Sect. 6 concludes.

2 Definitions

This paper is about the following prediction problem (continuing the discussion
started in [8]). We are given a training sequence of examples zi = (xi, yi),
i = 1, . . . , n for a fixed n, each consisting of an object xi and its label yi, and a
new test object xn+1; the task is to predict xn+1’s label yn+1. A potential label
y for xn+1 is true if y = yn+1 and false otherwise. The objects are drawn from
a non-empty measurable space X, the object space, and the labels from the label
space Y, which is assumed to be a non-trivial measurable space (meaning that
the σ-algebra on it is different from {∅,Y}).

A measurable function P : Zn+1 → [0, 1] is a randomness p-variable if,
for any probability measure Q on Z and any significance level α ∈ (0, 1),
Qn+1({P ≤ α}) ≤ α. And a measurable P : Zn+1 → [0, 1] is a conformal
p-variable if

� R({P ≤ α}) ≤ α for any exchangeable probability measure R on Zn+1

and any α ∈ (0, 1);
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� it is training-invariant, i.e., invariant w.r. to permutations of the training
examples:

P (zσ(1), . . . , zσ(n), zn+1) = P (z1, . . . , zn, zn+1) (1)

for each data sequence z1, . . . , zn+1 and each permutation σ of {1, . . . , n}
(training-invariant functions were called simply invariant in [8]).

We will sometimes refer to the values taken by p-variables as p-values, and our
notation for the classes of all randomness and conformal p-variables will be PR

and PtX, respectively.
Conformal p-variables can be used for prediction, and we will also refer to

them as conformal p-predictors. Notice that the standard expression “training
set” is only justified for predictors P satisfying (1) (and even in this case it
is not justified completely; it would be more accurate to say “training bag”).
There are several ways to package the output of conformal p-predictors. One
is in terms of set prediction: for each significance level α ∈ (0, 1), each training
sequence z1, . . . , zn, and each test object xn+1, we can output the prediction set

Γα := {y ∈ Y | P (z1, . . . , zn, xn+1, y) > α}. (2)

By the definition of a conformal p-variable, under the assumption of exchange-
ability, the probability that a conformal p-predictor makes an error at signifi-
cance level α, i.e., the probability of yn+1 /∈ Γα, is at most α. See [8, Sect. 2]
for a more detailed discussion of connections between conformal p-variables and
conformal p-prediction.

Instead of predicting with one prediction set in the family (2), we can package
our prediction as the prediction function

f(y) := P (z1, . . . , zn, xn+1, y), y ∈ Y. (3)

We may refer to this mode of prediction as functional prediction. The step
from set prediction to functional prediction is analogous from the step from
confidence intervals to p-value functions (see, e.g., [6, Sect. 9] and [3–5] for the
latter).

Remark 1. The term “functional prediction” is a straightforward modification
of “set prediction” and “p-value function”, but its disadvantage is that it is
easy to confuse with function prediction, namely predicting a function (e.g., a
biological function, such as that of a protein, or a mathematical function).

Similarly, we can use randomness p-variables for prediction, and then we
refer to them as randomness p-predictors. By definition, the probability that
the prediction set (2) derived from a randomness p-predictor makes an error
is at most α, this time under the assumption of randomness. We will use the
prediction functions (3) for randomness p-predictors as well.

Two important desiderata for conformal and randomness predictors are their
validity and efficiency. In terms of the prediction function f , validity concerns
the value f(yn+1) at the true label (its typical values should not be too small in
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p-prediction), and efficiency concerns the values f(y) at the false labels y ̸= yn+1

(they should be as small as possible in p-prediction). Validity is automatic under
randomness (and even exchangeability for conformal predictors), and in this
paper we are interested in the efficiency of conformal predictors relative to other
randomness predictors. Later in the paper (Theorems 7 and 8 below) we will
establish efficiency guarantees for conformal prediction in terms of randomness
prediction.

A nonnegative measurable function E : Zn+1 → [0,∞] is a randomness
e-variable if

∫
E dQn+1 ≤ 1 for any probability measure Q on Z. It is an ex-

changeability e-variable if
∫
E dR ≤ 1 for any exchangeable probability measure

R on Zn+1. We will denote the classes of all randomness and exchangeability
e-variables by ER and EX, respectively. The class of all measurable functions
E : Z → [0,∞ is denoted by E .

The class EtX of conformal e-variables consists of all functions E ∈ EX that
are training-invariant:

E(zσ(1), . . . , zσ(n), zn+1) = E(z1, . . . , zn, zn+1) (4)

for each data sequence z1, . . . , zn+1 and each permutation σ of {1, . . . , n}. We
often regard the randomness e-variables E ∈ ER as randomness e-predictors and
conformal e-variables E ∈ EtX as conformal e-predictors. Similarly to (3), they
output prediction functions

f(y) := E(z1, . . . , zn, xn+1, y), y ∈ Y.

For conformal and randomness e-predictors, validity and efficiency change di-
rection: for validity, typical values f(yn+1) should not be too large, and for
efficiency typical values f(y) at the false labels y ̸= yn+1 should be as large
as possible. Again validity is automatic under randomness, and Theorem 7
below establishes efficiency guarantees for conformal e-prediction in terms of
randomness e-prediction.

We will also need two important subclasses of ER. The subclass EtR of ER

consists of all functions E ∈ ER that are training-invariant (i.e., satisfy (4)).
The subclass E iR of ER consists of all functions E ∈ ER that are invariant w.r.
to all permutations:

E(zπ(1), . . . , zπ(n+1)) = E(z1, . . . , zn+1)

for each permutation π of {1, . . . , n+1}; let us call such randomness e-variables
invariant (this is almost the same thing as configuration randomness e-variables
in [8]).

A big advantage of e-variables over p-variables is that the average of e-
variables is again an e-variable. This allows us to define, given an e-variable
E ∈ ER, three derivative e-variables:

Ei(z1, . . . , zn+1) :=
1

(n+ 1)!

∑
π

E(zπ(1), . . . , zπ(n+1)), (5)
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EX(z1, . . . , zn+1) :=
E(z1, . . . , zn+1)

Ei(z1, . . . , zn+1)
, (6)

Et(z1, . . . , zn+1) :=
1

n!

∑
σ

E(zσ(1), . . . , zσ(n), zn+1), (7)

π ranging over the permutations of {1, . . . , n+1} and σ ranging over the permu-
tations of {1, . . . , n}. It is clear that Ei ∈ E iR whenever E ∈ ER, that EX ∈ EX

for all E ∈ E , and that Et ∈ EtX whenever E ∈ EX. The operators (5) and (7)
are kinds of averaging: while E 7→ Ei averages over all permutations of an input
data sequence (including both training and test examples), E 7→ Et averages
over the permutations of the training sequence only.

Using two of these three operators, we can turn any randomness e-variable
E to an exchangeability e-variable EX to a conformal e-variable (EX)t. The
following lemma shows that the order in which the last two operators are applied
does not matter.

Lemma 2. The operators t and X commute: for any E ∈ E, (Et)X = (EX)t.

Proof. Let us fix a data sequence z1, . . . , zn+1 and check (Et)X(z1, . . . , zn+1) =
(EX)t(z1, . . . , zn+1). As functions of a permutation of z1, . . . , zn+1, E and EX

are proportional to each other, and therefore, Et and (EX)t are also proportional
to each other. This implies (Et)X = (EX)t on the permutations of z1, . . . , zn+1.
And this is true for each (z1, . . . , zn+1).

We will let tX stand for the composition of the two operators:

EtX := (Et)X = (EX)t.

It is easy to see that E ∈ E belongs to EX if and only if, for any data sequence
z1, . . . , zn+1,

1

(n+ 1)!

∑
π

E(zπ(1), . . . , zπ(n+1)) ≤ 1, (8)

π ranging over the permutations of {1, . . . , n+1}. Let us say that such an E is
admissible if (8) always holds with “=” in place of “≤”. (This agrees with the
standard notion of admissibility in statistical decision theory.)

The intuition (which can be formalized easily) behind the operators that we
have just introduced is that:

�
i projects ER onto E iR; it also projects the admissible part of EX onto the
identical 1;

�
X projects E onto the admissible part of EX;

�
t projects EX onto EtX;

�
tX projects E onto the admissible part of EtX.
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In particular, these operators are idempotent:

(Ei)i = Ei, (EX)X = EX, (Et)t = Et, (EtX)tX = EtX.

Despite these operators being projections, we cannot claim that these ways of
moving between different function classes are always optimal.

Lemma 2 lists the only two cases where the combination of two of our three
basic operators (i, X, and t) gives something interesting. The other four cases
are:

(EX)i = (Ei)X = 1, (Ei)t = (Et)i = Ei.

3 Main results

Let B be a Markov kernel with source Z and target Y, which we will write in
the form B : Z ↪→ Y (as in [10, Sect. A.4]). We will write B(A | z) for its value
on z ∈ Z and A ⊆ Y (where A is measurable), and we will write

∫
f(y)B(dy | z)

for the integral of a function f on Y w.r. to the measure A 7→ B(A | z). We will
show that the efficiency of various predictors (such as the conformal predictor)
derived from a randomness predictor E is not much worse than the efficiency of
the original randomness predictor E on average, and B will define the meaning
of “on average”.

3.1 Kolmogorov’s step

The following statement shows that the efficiency does not suffer much on aver-
age when we move from randomness e-prediction to exchangeability e-prediction.
It is a counterpart of Corollary 5 in [8] (with a similar proof).

Theorem 3. Let B : Z ↪→ Y be a Markov kernel. For each randomness e-
predictor E,

G(z1, . . . , zn, zn+1) := e−1

∫
E(z1, . . . , zn, xn+1, y)

EX(z1, . . . , zn, xn+1, y)
B(dy | zn+1) (9)

(with 0/0 interpreted as 0 and zn+1 represented as (xn+1, yn+1)) is a randomness
e-variable.

We can interpret (9) as a statement that EX is almost as efficient as E: the
mean ratio of the degree to which E rejects a false label y to the degree to
which EX rejects y is bounded by e under any probability measure that may
depend on the test example. This will be further discussed after we state our
main result, Theorem 8.

Proof of Theorem 3. We will define G as G2G3, where G2 ∈ E iR and G3 ∈ EX

(it is obvious that these two inclusions will imply G ∈ ER). First we define an
approximation G1 to G2 as

G1(z1, . . . , zn+1) :=
1

n+ 1

n+1∑
i=1

∫
Ei(z1, . . . , zi−1, xi, y, zi+1, . . . , zn+1)B( dy | zi).
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In other words, G1(z1, . . . , zn+1) is obtained by randomly (with equal proba-
bilities) choosing an example zi in the data sequence z1, . . . , zn+1, replacing its
label yi by a random label y ∼ B(· | zi), and finding the expectation of Ei

on z1, . . . , zn+1 modified in this way. We can see that G1 is invariant, but it
does not have to be in E iR. The invariant randomness e-variable G2 is defined
similarly, except that now we replace each label yi, i = 1, . . . , n+1, by a random
label y ∼ B(· | zi) with probability 1

n+1 (all independently). The key observa-
tion is that G2/G1 ≥ 1/e, which follows from the probability that exactly one
label will be changed in the construction of G2 being

(n+ 1)
1

n+ 1

(
n

n+ 1

)n

≥ 1/e.

Finally, G3 ∈ EX is defined by

G3(z1, . . . , zn+1) :=

∫
Ei(z1, . . . , zn, xn+1, y)B(dy | zn+1)

G1(z1, . . . , zn+1)
.

Combining all these statements, we get

G(z1, . . . , zn+1) = G2(z1, . . . , zn+1)G3(z1, . . . , zn+1)

≥ 1

e
G1(z1, . . . , zn+1)G3(z1, . . . , zn+1)

=

∫
Ei(z1, . . . , zn, xn+1, y)B(dy | zn+1).

By the definition (6), this is equivalent to (9).

Notice that Theorem 3 does not assume the homoscedasticity of the la-
bels. The simplest informative examples, however, are indeed homoscedastic:
in them, for each z = (x, y) ∈ Z, B(· | z) is the distribution of y + ξ for a given
random variable ξ. In general, however, the distribution of ξ may depend on
the object x.

The following result is a simple inverse to Theorem 3.

Theorem 4. The constant e−1 in Theorem 3 cannot be replaced by a larger
one.

Proof. In this proof we follow the example in [8, Sect. B.1] (the example in [8]
is informal, and here we formalize it). Without loss of generality we assume
|X| = 1 (so that the objects become uninformative and we can omit them from
our notation) andY = {0, 1} (with the discrete σ-algebra). Define a randomness
e-variable E by

E(y1, . . . , yn+1) :=


(
1− 1

n+1

)−n

if k = 1

0 if not,
(10)

where k is the number of 1s in y1, . . . , yn+1. This is indeed a randomness e-
variable, since the maximum probability of k = 1 in the Bernoulli model, (n+
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1)p(1− p)n → max, is attained at p = 1
n+1 . The corresponding exchangeability

e-variable is

EX(y1, . . . , yn+1) =

{
1 if k = 1

0 if not.
.

Let B just flip the label: B({1 − y} | y) = 1. Suppose Theorem 3 holds with
the e−1 in (9) replaced by c > e−1. Then the randomness e-variable G satisfies

G(0, . . . , 0) = c

(
1− 1

n+ 1

)−n

∼ ce > 1,

which is impossible for a large enough n (since the probability measure concen-
trated on (0, . . . , 0) is of the form Qn+1).

Remark 5. Whereas the randomness e-variable E defined by (10) is all we need
to prove Theorem 4, it is not useful for prediction. A variation on (10) that can
be used in prediction is

E(y1, . . . , yn+1) :=

(n+ 1)
(
1− 1

n+1

)−n

if (y1, . . . , yn, yn+1) = (0, . . . , 0, 1)

0 if not.

According to this randomness e-predictor, after observing n 0s in a row, we are
likely to see 0 rather than 1. This is a version of Laplace’s rule of succession.
While under randomness we have E(0, . . . , 0, 1) ∼ en, under exchangeability we
can only achieve EX(0, . . . , 0, 1) = n+ 1 ∼ n.

3.2 Training-invariance step

To state our result in its strongest form, we define a test-conditional exchange-
ability e-variable G = G(z1, . . . , zn, zn+1) as an element of E satisfying

∀(z1, . . . , zn+1) ∀σ :
1

n!

∑
σ

G(zσ(1), . . . , zσ(n), zn+1) ≤ 1,

σ ranging over the permutations of {1, . . . , n}. Such G form a subclass of EX.

Theorem 6. Let B : Z ↪→ Y be a Markov kernel. For each exchangeability
e-predictor E,

G(z1, . . . , zn, zn+1) :=

∫
E(z1, . . . , zn, xn+1, y)

Et(z1, . . . , zn, xn+1, y)
B(dy | zn+1) (11)

(with 0/0 interpreted as 0) is a test-conditional exchangeability e-variable.

The interpretation of (11) is similar to that of (9).
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Proof of Theorem 6. It suffices to check that the right-hand side of (11) is a
test-conditional exchangeability e-variable. We have:

1

n!

∑
σ

G(zσ(1), . . . , zσ(n), zn+1)

=
1

n!

∑
σ

∫
E(zσ(1), . . . , zσ(n), xn+1, y)

Et(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

=

∫
Et(z1, . . . , zn, xn+1, y)

Et(z1, . . . , zn, xn+1, y)
B(dy | zn+1) ≤ 1.

3.3 Putting everything together

The following theorem combines Theorems 3 and 6 and establishes a connection
between randomness and conformal e-predictors. Remember that the confor-
mal e-predictor EtX derived from a randomness e-predictor E is obtained by
combining the operators (6) and (7), i.e., as

EtX(z1, . . . , zn+1) := (n+ 1)

∑
σ E(zσ(1), . . . , zσ(n), zn+1)∑

π E(zπ(1), . . . , zπ(n+1))
, (12)

σ and π ranging over the permutations of {1, . . . , n} and {1, . . . , n+1}, respec-
tively.

Theorem 7. Let B : Z ↪→ Y be a Markov kernel. For each randomness e-
predictor E,

G(z1, . . . , zn, zn+1) := e−1/2

∫ √
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
B(dy | zn+1) (13)

is a randomness e-variable.

Theorem 7 is the main result of this paper for e-predictors. Its main weakness
is the presence of the term e−1/2, but it might be inevitable.

Proof. Applying the Cauchy–Schwarz inequality, we have, for some G1, G2, G ∈
ER,

e−1/2

∫ √
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

= e−1/2

∫ √
E(z1, . . . , zn, xn+1, y)

EX(z1, . . . , zn, xn+1, y)

√
EX(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

≤

√
e−1

∫
E(z1, . . . , zn, xn+1, y)

EX(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

9



×

√∫
EX(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

=
√
G1(z1, . . . , zn+1)G2(z1, . . . , zn+1) ≤ G(z1, . . . , zn+1)

(the existence of G1 and G2 follows from Theorems 3 and 6, respectively).

It is known that, for any δ ∈ (0, 1), the function p 7→ δpδ−1 transforms p-
values to e-values and that the function e 7→ e−1 transforms e-values to p-values
(see, e.g., [11, Propositions 2.1 and 2,2]). This allows us to adapt Theorem 8 to
p-predictors.

Theorem 8. Let B : Z ↪→ Y be a Markov kernel and let δ ∈ (0, 1). For each
randomness p-predictor P there exists a conformal p-predictor P ′ such that

G(z1, . . . , zn, zn+1) := (δ/e)1/2

×
∫ √

P (z1, . . . , zn, xn+1, y)δ−1P ′(z1, . . . , zn, xn+1, y)B(dy | zn+1) (14)

is a randomness e-variable.

The interpretation of (14) is that P ′(z1, . . . , zn, xn+1, y) is typically small
(perhaps not to the same degree) when P (z1, . . . , zn, xn+1, y) is small; i.e., we
do not lose much in efficiency when converting randomness p-predictors to con-
formal p-predictors. To see this, fix small ϵ1, ϵ2 ∈ (0, 1). Then we will have
G(z1, . . . , zn, zn+1) < 1/ϵ1 for the true data sequence z1, . . . , zn, zn+1 unless a
rare event (of probability at most ϵ1) happens. For the vast majority of the
potential labels y ∈ Y we will have

(δ/e)1/2
√

P (z1, . . . , zn, xn+1, y)δ−1P ′(z1, . . . , zn, xn+1, y) <
1

ϵ1ϵ2
, (15)

where “the vast majority” means that the B(· | zn+1) measure of the y satisfying
(15) is at least 1− ϵ2. We can rewrite (15) as

P ′(z1, . . . , zn, xn+1, y) <
eP (z1, . . . , zn, xn+1, y)

1−δ

δϵ21ϵ
2
2

,

so that P ′(z1, . . . , zn, xn+1, y) → 0 as P (z1, . . . , zn, xn+1, y) → 0. This is, of
course, true for any Markov kernel B.

Proof of Theorem 8. Fix δ ∈ (0, 1) and P ∈ PR. Set E := δP δ−1 and P ′ :=
1/EtX, so that E ∈ ER and P ′ ∈ PtX. According to (13),

G(z1, . . . , zn, zn+1) := e−1/2

∫ √
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
B(dy | zn+1)

= e−1/2

∫ √
δP (z1, . . . , zn, xn+1, y)δ−1P ′(z1, . . . , zn, xn+1, y)B(dy | zn+1)

is a randomness e-variable.
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4 Applications to classification

In this and next sections we will discuss some interesting examples of Markov
kernels B as used in Theorems 7 and 8. In this section we discuss the case of
classification, |Y| < ∞, which was also discussed earlier in [8].

Let us start from binary classification, Y := {0, 1}. In this case, the most
natural choice of B is B({y} | (x, y)) := 0, so that the Markov kernel sends
every example (x, y) to the other label 1− y. We can rewrite (13) as

G(z1, . . . , zn, zn+1) := e−1/2

√
E(z1, . . . , zn, xn+1, 1− yn+1)

EtX(z1, . . . , zn, xn+1, 1− yn+1)
, (16)

which does not involve any averaging. We can interpret (16) as the conformal
e-predictor EtX being almost as efficient as the original randomness e-predictor
E, where efficiency is measured by the degree to which we reject the false label
1−yn+1. For example, for a small positive constant ϵ, G ≥ 1/ϵ with probability
at most ϵ, and so

EtX(z1, . . . , zn, xn+1, 1− yn+1) > e−1ϵ2E(z1, . . . , zn, xn+1, 1− yn+1)

with probability at least 1− ϵ.
In the case of reduction of a randomness p-predictor, we rewrite (14) as

G(z1, . . . , zn, zn+1) = (δ/e)1/2

×
√
P (z1, . . . , zn, xn+1, 1− yn+1)δ−1P ′(z1, . . . , zn, xn+1, 1− yn+1).

Therefore,

P ′(z1, . . . , zn, xn+1, 1− yn+1) < eδ−1ϵ−2P (z1, . . . , zn, xn+1, 1− yn+1)
1−δ

with probability at least 1 − ϵ. The interpretation is similar to that of the
e-version.

In the rest of this section, let us only discuss reduction of randomness e-
predictors to conformal e-predictors. Reduction of randomness p-predictors to
conformal p-predictors is completely analogous; it just uses (14) instead of (13).

In the case of multi-class classification, 2 < |Y| < ∞, the most natural
Markov kernel B is perhaps the one for which B(· | (x, y)) is the uniform
probability measure on Y \ {y}. In this case we can rewrite (13) as

G(z1, . . . , zn, zn+1) :=
e−1/2

|Y| − 1

∑
y∈Y\{yn+1}

√
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
. (17)

The interpretation of (17) is that the conformal e-predictor EtX is almost as
efficient as the original randomness e-predictor E on average; as before, efficiency
is measured by the degree to which we reject the false labels y ̸= yn+1. Of
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course, we can avoid “on average” by making (17) cruder and replacing it by
the existence of G ∈ ER satisfying

∀(z1, . . . , zn) ∈ Zn ∀xn+1 ∈ X ∀y ∈ Y \ {yn+1} :

G(z1, . . . , zn, zn+1) ≥
e−1/2

|Y| − 1

√
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
,

where zn+1 := (xn+1, yn+1). For a small positive constant ϵ, we can then claim
that, with probability at least 1− ϵ,

∀y ∈ Y \ {yn+1} : EtX(z1, . . . , zn, xn+1, y) >
e−1ϵ2

(|Y| − 1)2
E(z1, . . . , zn, xn+1, y).

An interesting variation of (17), corresponding to the Markov kernel B for
which B(· | (x, y)) is the uniform probability measure on Y, is

G(z1, . . . , zn, zn+1) :=
e−1/2

|Y|
∑
y∈Y

√
E(z1, . . . , zn, xn+1, y)

EtX(z1, . . . , zn, xn+1, y)
.

Under this definition, the randomness e-variable G does not depend on yn+1.

5 Applications to regression

In this section we set Y := R; therefore, we consider the problem of regression.
In applied regression problems, we are often interested in prediction intervals
rather than arbitrary prediction sets. This calls for an investigation of the
regularity of the derived conformal predictor, which we will start in this section.

We will be interested only in upper prediction limits, as in [2, Sect. 7.2(i)].
Once we deal with those, we can treat lower prediction limits in the same way,
and then a prediction interval can be formed as the intersection of the rays
defined by upper and lower prediction limits. (In several respects, this is much
more convenient than finding prediction intervals directly, as shown in the con-
text of conformal regression in [1] and discussed in [10, Sect. 2.3.2].) For sim-
plicity, let us concentrate on e-prediction.

Given a randomness e-predictor E, the derived conformal e-predictor EtX

is based on repeated averaging: see (12). Therefore, we can expect EtX to be
more regular. We start from checking the regularity of EtX in a simple case.

Let us say that a randomness e-predictor E is monotonic if E(z1, . . . , zn+1)
is increasing in yn+1 but decreasing in yi for each i ∈ {1, . . . , n}. (This is
analogous to monotonic conformity measures as discussed in [10, Sect. 7.2.3].)

Lemma 9. If a randomness e-predictor E ∈ ER is monotonic, then its confor-
mal version EtX ∈ EtX, defined by (12), is increasing in yn+1.

Lemma 9 says that the prediction function output by EtX is increasing.
It is clear that this lemma is also applicable to conformal p-predictors, in the
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following sense: if P ∈ PR is monotonic (decreasing in yn+1 and increasing in
yi, i ̸= n+ 1), then its conformalized version 1/(δP δ−1)tX outputs a decreasing
prediction function. Therefore, the conformalized version will output rays as its
prediction sets.

Proof of Lemma 9. The denominator of the fraction in (12) is the sum of its
numerator, which is increasing in yn+1, and addends that are decreasing in
yn+1. It remains to notice that the fraction

f(y)

f(y) + g(y)
=

1

1 + g(y)/f(y)
,

where f and g are nonnegative functions that are increasing and decreasing,
respectively, is increasing in y.

The next proposition gives a lower bound on the conformalized version
of a particularly simple prediction set output by a monotonic randomness e-
predictor. Namely, we consider an “upper prediction ray”, a prediction func-
tion of the form f(y) = D1{y≥b}, where b ∈ R is the upper prediction limit and
D > 0 reflects the confidence in this prediction.

Proposition 10. Let B : Z ↪→ Y be a Markov kernel. Suppose a monotonic
randomness e-predictor E, given a training sequence z1, . . . , zn and test object
xn+1, outputs a set prediction f(y) := D1{y≥b} for the label yn+1, where D > 0
and b ∈ R. Let F be the distribution function of B(· | zn+1). Then the function
h : R → R defined by

h(y) :=
D(F (y)− F (b))2

eg2
1{y≥b}, (18)

where g := G(z1, . . . , zn+1) and G is the randomness e-variable defined in The-
orem 7, is a lower bound on the prediction function output by EtX.

The parameter b of the prediction function D1{y≥b} of E, reflecting the
precision of the upper prediction limit, should ideally be greater than but close
to yn+1, and then we could interpret b− yn+1 as the precision. The prediction
function of EtX is increasing by Lemma 9. The bound (18) is very weak, which
can be seen from h(∞) ≤ D/(eg2). However, this is the best that can be derived
from Theorem 7: being competitive on average does not mean being competitive
at each individual label y.

Proof of Proposition 10. It suffices to consider only y > b in (18). Let A
be the value of the prediction function output by EtX at some point a >
b. Then the right-hand side of (13) is smallest if the prediction function
EtX(z1, . . . , zn, xn+1, ·) is A at and to the left of a and is ∞ to the right of
a. Therefore, it is impossible to have

e−1/2

∫ a

b

√
D

A
dF > g,
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i.e.,

A <
D(F (a)− F (b))2

eg2
,

which gives the lower bound (18).

Let us see what the lower bound (18) becomes for specific distributions, e.g.,
the exponential ones centred at yn+1,

F (y) :=

{
1− exp(−λ(y − yn+1)) if y > yn+1

0 otherwise,

where λ is a positive constant. (Remember that F is allowed to depend on
zn+1.) The lower bound becomes

h(y) =
D(exp(−λ(b− yn+1))− exp(−λ(y − yn+1)))

2

eg2

for y > b and b > yn+1. In the homoscedastic, or nearly homoscedastic, regular
case we could choose the parameter λ close to the typical values of 1/(b −
yn+1). Then h(2b − yn+1) would have the order of magnitude at least Dg−2

(the geometric interpretation of 2b − yn+1 is that b is half-way between yn+1

and 2b− yn+1).

6 Conclusion

These are some directions of further research:

� Can we connect any two of the classes PR, PX, and PtX directly (in the
spirit of Theorem 8), without a detour via e-values?

� Our only optimality result, Theorem 4, covers Kolmogorov’s step only. It
would be ideal to have optimality results related to Theorems 7 and 8.

References

[1] Evgeny Burnaev and Vladimir Vovk. Efficiency of conformalized ridge re-
gression. JMLR: Workshop and Conference Proceedings, 35:605–622, 2014.
COLT 2014.

[2] David R. Cox and David V. Hinkley. Theoretical Statistics. Chapman and
Hall, London, 1974.

[3] Donald A. S. Fraser. p-values: the insight to modern statistical inference.
Annual Review of Statistics and its Application, 4:1–14, 2017.

[4] Donald A. S. Fraser. The p-value function and statistical inference. Amer-
ican Statistician, 73sup1:135–147, 2019.

14



[5] Denis Infanger and Arno Schmidt-Trucksäss. P value functions: An un-
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