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Abstract

This paper introduces inductive randomness predictors, which form a superset
of inductive conformal predictors. It turns out that a typical inductive con-
formal predictor is strictly dominated by an inductive randomness predictor,
although the improvement is not great, at most a factor of e ≈ 2.72. The dom-
inating inductive conformal predictors are more complicated and more difficult
to compute; besides, an improvement by a factor of e is rare.
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1 Introduction

Randomness predictors were introduced and studied in [15]. Their definition is
trivial (it is a straightforward application of the definition of p-values), but they
include conformal predictors as their proper subclass, and conformal predictors
have been widely implemented (see, e.g., [2,3]), used (see, e.g., [13]), and studied
(see, e.g., [1]). Both [15] and the follow-up paper [16] concentrate on negative
results about randomness predictors, showing that the difference in predictive
efficiency between conformal and randomness prediction is not great. (While [15]
covers worst-case difference, [16] also treats difference on average.) This paper
concentrates, instead, on positive results, giving examples of situations were
randomness predictors have an advantage over conformal predictors.

Both conformal and randomness predictors are valid (ensure the desired
coverage probability) under the assumption of randomness, which is standard
in machine learning. The main advantage of randomness prediction, if real, may
lie in its efficiency, which is defined, informally, as the smallness of the p-values
that it produces for false labels. A major limitation of conformal predictors,
discussed in detail in [18], is that the p-values that they output can never drop
below 1

n+1 , where n is the length of the training sequence. An advantage of

randomness predictors is that the lower bound improves to 1
e(n+1) . The factor

of e (the base of natural logarithms, e ≈ 2.72) in the denominator is negligible
by the usual standards of the algorithmic theory of randomness, but substantial
from the point of view of standard machine learning and statistics.

The most popular kind of conformal predictors is inductive conformal pre-
dictors. Their main advantage is that they can be used on top of generic point
predictors without prohibitive computational costs, whereas full conformal pre-
diction is computationally efficient only on top of a relatively narrow class of
point predictors. The smallest p-value that can be achieved by an inductive
conformal predictor is 1

m+1 , where m is the number of “calibration examples”
(to be defined later). This paper introduces and studies inductive randomness
predictors, which are also computationally efficient (at least in the part that
depends on the actual data rather than merely on m).

We will start in Sect. 2 from the main definitions, including that of induc-
tive randomness predictors. Section 3 is devoted to computing binary inductive
randomness predictors, whose use is illustrated on two examples. The topic of
Sect. 4 is the inadmissibility of inductive conformal predictors as inductive ran-
domness predictors. Section 5 introduces a more interesting class of inductive
randomness predictors, which we call “sequential”. While both binary and se-
quential inductive randomness predictors sometimes achieve p-values of 1

e(m+1) ,

only sequential inductive randomness predictors dominate inductive conformal
predictors. The short Sect. 6 concludes.

Let N0 := {0, 1, . . . } and N1 := {1, 2, . . . } be the two standard sets of natural
numbers.
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2 Definitions

The prediction problem considered in this paper is the same as in [15,16]. We are
given a training sequence z1, . . . , zn, where zi = (xi, yi) (an example) consists
of an object xi ∈ X and a label yi ∈ Y, and a test object xn+1 ∈ X. Our task
is to predict the label yn+1 of xn+1. The object space X and the label space Y
are non-empty measurable spaces, and the length n of the training sequence is
fixed. To exclude trivialities, let us assume that n ≥ 2 and that the σ-algebra on
Y is different from {∅,Y} (i.e., that Y contains at least two essentially distinct
elements).

In the definition of an inductive conformal predictor we will follow [17,
Sect. 4.2.2]. The training sequence z1, . . . , zn is split into two parts: the proper
training sequence z1, . . . , zl of size l and the calibration sequence zl+1, . . . , zn of
size m := n− l; we will assume l ∈ N1 and m ∈ N1. An inductive nonconformity
measure is a measurable function A : Zl+1 → R, where Z := X × Y is the
example space. The inductive conformal predictor (ICP) based on A outputs
the prediction p-function

f(y) :=
|{j = l + 1, . . . , n+ 1 | αj ≥ αn+1}|

m+ 1
∈
[

1

m+ 1
, 1

]
, (1)

where the αs are defined by

αj := A(z1, . . . , zl, zj), j = l + 1, . . . , n, (2)

αn+1 := A(z1, . . . , zl, xn+1, y) (3)

To define and discuss inductive randomness predictors, we will need several
auxiliary notions. The upper randomness probability of a measurable set E ⊆
Zn+1 is defined in [17, Sect. 9.1.1] as

PR(E) := sup
Q∈P(Z)

Qn+1(E), (4)

where we use the notation P(Z) for the set of all probability measures on a
measurable set Z. An inductive nonconformity measure is a measurable function
A : Zl+1 → S, where S is a measurable space which we will call the summary
space; typically, S ⊆ R, and so our new definition is a very slight modification
of the old one. Similarly to (4), we define the upper randomness probability of
a measurable set E ⊆ Sm+1 as

PR(E) := sup
Q∈P(S)

Qm+1(E).

(Therefore, the notation PR is overloaded, but it should never lead to confusion
in this paper.) An aggregating p-variable P : Sm+1 → [0, 1] is defined to be a
randomness p-variable on Sm+1; its defining requirement is

∀ϵ ∈ (0, 1) : PR({P ≤ ϵ}) ≤ ϵ. (5)
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A randomness predictor, as defined in [15,16], is a p-variable P : Zn+1 → [0, 1],
meaning that it is required to satisfy (5).

In inductive randomness prediction, the training sequence z1, . . . , zn is still
split into the proper training sequence z1, . . . , zl and the calibration sequence
zl+1, . . . , zn. The inductive randomness predictor (IRP) based on (sometimes
we will say “corresponding to”) an inductive nonconformity measure A and an
aggregating p-variable P is defined to be the randomness predictor

PA(z1, . . . , zn+1) := P (αl+1, . . . , αn+1),

where
αj := A(z1, . . . , zl, zj), j = l + 1, . . . , n+ 1. (6)

Given a training sequence z1, . . . , zn and a test object xn+1, the IRP PA outputs
the prediction p-function

f(y) = f(y; z1, . . . , zn, xn+1) := PA(z1, . . . , zn, xn+1, y). (7)

This function itself can be considered to be the IRP’s prediction for yn+1. Al-
ternatively, we can choose a significance level ϵ > 0 (i.e., our target probability
of error) and output the prediction set

Γϵ := {y ∈ Y | f(y) > ϵ} (8)

as our prediction for yn+1. By the definition of p-variable, the probability of
error (meaning yn+1 /∈ Γϵ) will not exceed ϵ.

IRPs considered in this paper will often output prediction p-functions of an
especially simple kind. Let us say that the prediction function (7) is a hedged
prediction set if it has the form

f(y) =

{
1 if y ∈ E

c otherwise,

where E ⊆ Y is the prediction set associated with it and c ∈ [0, 1) reflects our
confidence in this prediction set; the smaller c the greater confidence. We will
refer to c as the incertitude of the prediction set E. As always, the expression
“prediction interval” will be applied to prediction sets that happen to be inter-
vals of the real line, and the corresponding hedged prediction sets will be called
hedged prediction intervals.

Remark 1. In our analysis of inductive randomness predictors, we will assume
that all n+1 examples under consideration are IID, although it will be obvious
that it is sufficient to assume that only the calibration and test examples are
IID.

ICPs are a special case of IRPs based on the aggregating p-variable

Π(αl+1, . . . , αn+1) :=
|{j = l + 1, . . . , n+ 1 | αj ≥ αn+1}|

m+ 1
,
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(αl+1, . . . , αn+1) ∈ Sm+1. (9)

Therefore, we will use the notation ΠA for the ICP based on an inductive non-
conformity measure A.

In statistical hypothesis testing (see, e.g., [4, Sect. 3.2]) it is customary to
define p-variables via “test statistics”. In this spirit, we can define an aggregating
function as any measurable function B : Sm+1 → R. It defines the aggregating
p-variable

PB(αl+1, . . . , αn+1) := PR ({B ≥ B(αl+1, . . . , αn, αn+1)}) ,
(αl+1, . . . , αn+1) ∈ Sm+1. (10)

(Intuitively, large values of B indicate nonconformity.) This aggregating p-
variable can then be used as an input to an IRP, and then we might say that
this IRP is based on A (an inductive nonconformity measure) and B.

3 Binary inductive randomness predictors

In this section we will concentrate on binary inductive randomness predictors
(BIRPs), for which the summary space is S := {0, 1}. Intuitively, a summary of
0 means conformity, and 1 means lack of conformity. BIRPs are simple but they
are less efficient than the sequential randomness predictors considered later in
Sect. 5.

Let me give two examples of BIRPs, one for regression and another for binary
classification.

Example 2. Here we are interested in a regression problem, so that Y =
R. The inductive nonconformity measure A is defined as follows: to define
A(z1, . . . , zl, x, y), train a regression model ĝ : X → R on z1, . . . , zl as training
sequence and set

A(z1, . . . , zl, x, y) :=

{
1 if |y − ĝ(x)| > maxi=1,...,l |yi − ĝ(xi)|
0 otherwise,

(11)

where zi = (xi, yi), i = 1, . . . , l. As for B, we set

B(αl+1, . . . , αn, αn+1) := max

(
αn+1 −

1

n

n∑
i=1

αi, 0

)
. (12)

Therefore, B(αl+1, . . . , αn, αn+1) is 0 if αn+1 = 0 and is positive otherwise
(unless α1, . . . , αn are all zero).

Let us see how the IRP based on A and B can be applied in the context
of inductive randomness prediction assuming that A(z1, . . . , zl, zi) = 0 for some
i ∈ {l + 1, . . . , n} (this excludes a very anomalous case with severe overfitting).
Given a training sequence z1, . . . , zn, we start from training a regression model
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ĝ : X → R on the proper training sequence z1, . . . , zl. Next we compute the half-
width h := maxi=1,...,l |yi − ĝ(xi)| of the hedged prediction intervals output by
the IRP. Given a test object xn+1, we compute the prediction interval [c−h, c+h]
centred at the point prediction c := ĝ(xn+1). The incertitude of this prediction
interval will be computed in Proposition 4, as discussed after the statement of
the proposition. Only the last step (computing the incertitude) involves the
calibration sequence.

Example 3. Now set Y := {−1, 1}, so that here we are interested in binary
classification. To define A(z1, . . . , zl, x, y), consider the support vector machine
(SVM) constructed from z1, . . . , zl as training sequence. Set A(z1, . . . , zl, x, y)
to 1 if x is classified incorrectly (namely, as −y) by this SVM and x is outside
its margin; set A(z1, . . . , zl, x, y) to 0 otherwise. A reasonable definition of B is
still (12).

The hedged prediction set for a test object xn+1 will be {ŷ} if xn+1 is
outside the margin, where ŷ is the SVM’s prediction for the label of xn+1.
Otherwise (if xn+1 is inside the margin), the prediction set will be vacuous,
{−1, 1}. This assumes, again, that A(z1, . . . , zl, zi) = 0 for some i ∈ {l +
1, . . . , n}. The incertitude of this prediction set will be given after the statement
of Proposition 4, and only this step uses the calibrating sequence.

An alternative definition would be to set A(z1, . . . , zl, x, y) to 1 if x is a sup-
port vector for the SVM constructed from (z1, . . . , zl, x, y) as training sequence
and to set it to 0 otherwise, as in [9, Sect. 2]. However, the computational cost
of such an IRP would be prohibitive, since it would require constructing a new
SVM for each text object and each possible label for it.

Both IRPs described in Examples 2 and 3 output predictions sets that do not
depend on the calibration sequence. This makes them inflexible as compared
with typical conformal predictors, but on the positive side they can achieve very
low incertitudes.

Let us now compute the p-values output by BIRPs based on the aggregating
function (12). The following proposition gives the result of the computation,
and after its statement we will discuss ways of using it.

Proposition 4. Suppose that a binary sequence αl+1, . . . , αn contains K < m
1s and that αn+1 = 1. Then the aggregating function B defined by (12) leads to
a p-value PB(αl+1, . . . , αn+1) of

max
p∈[0,1]

K∑
k=0

(
m

k

)
pk+1(1− p)m−k. (13)

In particular,

� for K = 0, the p-value is

mm

(m+ 1)m+1
∼ exp(−1)

m
≈ 0.37

m
, (14)

where “∼” holds as m → ∞ (and we can replace “∼” by “≤”),
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� for K = 1, the p-value is asymptotically equivalent (as m → ∞) to

(ϕ+ ϕ2) exp(−ϕ)

m
≈ 0.84

m
, (15)

where ϕ := (1 +
√
5)/2 is the golden ratio,

� for K = 2, the p-value is asymptotically equivalent to

(c+ c2 + c3/2) exp(−c)

m
≈ 1.37

m
, (16)

where

c :=
1 + (37− 3

√
114)1/3 + (37 + 3

√
114)1/3

3
,

� and for K = 3, the p-value is asymptotically equivalent to

(c+ c2 + c3/2 + c4/6) exp(−c)

m
≈ 1.94

m
, (17)

where

c :=
1

4
+

1

4

(
4(
√
778− 7)1/3 − 36(

√
778− 7)−1/3 + 9

)1/2
+

1

2

(
−(

√
778− 7)1/3 + 9(

√
778− 7)−1/3 +

9

2

+
61

2
√

4(
√
778− 7)1/3 − 36(

√
778− 7)−1/3 + 9

)1/2

.

In the context of Example 2, we can expect that K = 0 if the calibration
sequence is much shorter than the proper training sequence and ĝ does not
involve too much overfitting. In this case the prediction interval output by the
IRP based on (11) and (12) will be more confident than the identical prediction
interval output by the ICP based on the same inductive nonconformity measure
(11): the incertitude of of the former will be approximately 0.37/m for large m,
whereas the incertitude of the latter will be approximately 1/m. An advantage
of ICPs is, of course, that their hedged prediction intervals can be much more
adaptive and, moreover, their prediction p-functions do not have to be hedged
prediction sets.

Even if K = 1, the incertitude for the IRP based on (11) and (12) is still
close to 0.84/m (see (15)), which is better than the smallest p-value that can
be achieved by any ICP on any training sequence.

In the context of Example 3, the definition of the nonconformity measure A
was chosen so that K can be expected to be small. In this case the incertitude of
the IRP based on (11) and (12) will be significantly better than the incertitude
of the ICP based on (11) (we will discuss this further after the proof; cf. Table 1).
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Proof of Proposition 4. The condition of the proposition implies that the in-
ductive nonconformity measure A is a surjection. Let Bp be the Bernoulli
probability measure on {0, 1} with parameter p ∈ [0, 1]: Bp({1}) = p. Since
the sequence αl+1, . . . , αn+1 is IID, the p-value is the largest probability under
Bm+1

p of the event of observing at most K 1s among αl+1, . . . , αn and observing
αn+1 = 1. This gives the expression (13).

When K = 0, maxp p(1 − p)m is attained at p = 1
m+1 , which leads to (14).

The inequality
mm

(m+ 1)m+1
≤ exp(−1)

m
(18)

is equivalent to (
1− 1

m+ 1

)m+1

≤ exp(−1)

and is easy to check.
When K = 1, solving the optimization problem

p(1− p)m +mp2(1− p)m−1 → max (19)

leads to a quadratic equation with the solution in [0, 1] equal to

m− 2 +
√
5m2 − 4m

2(m2 − 1)
∼ ϕ

m
.

Plugging this into the objective function (19) gives (15).
Now let us deal with an arbitrary (but fixed) K and let m → ∞. The

optimal value of p in (13) will be of the form p ∼ c/m for a constant c (as we
will see later in the proof). Plugging p ∼ c/m into the expression following
maxp∈[0,1] in (13), we can see that this expression is asymptotically equivalent
to

K∑
k=0

ck+1e−c

k!m
. (20)

This gives the left-hand sides of (16) and (17). Setting the derivative of (20) to
0, we can check that the optimal c satisfies the equation

K∑
k=0

ck

k!
=

cK+1

K!
.

In the cases of K = 2 and K = 3, we obtain cubic and quartic equations,
respectively, and their solutions are given in the statement of the proposition.

Table 1 gives the numerators of asymptotic expressions such as (14)–(17) for
a wide range of K. The IRP is based on (11) and (12), and the ICP is based on
(11). The row labelled “IRP” gives the numerator itself, and the row labelled
“ratio” gives the ratio of the numerator for the IRP to the numerator for the
ICP. We can see that the ratio is substantially less than 1 even for K = 7, in
which case we have 4.472/m for the IRP (approximately) and 0.125/m for the
ICP; the growth of the ratio quickly slows down as K increases.
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Table 1: The asymptotic numerators of the incertitudes for the IRP and ICP
for various values of K: the asymptotic incertitude for the prediction set output
by the IRP is aK/m, where aK is given in row “IRP”, and the asymptotic
incertitude for the ICP is (K + 1)/m, with the numerator K + 1 given in row
“ICP”. Row “ratio” reports aK/(K+1) showing by how much aK/m is smaller.

K 0 1 2 3 4 5 6 7
IRP 0.368 0.840 1.371 1.942 2.544 3.168 3.812 4.472
ICP 1 2 3 4 5 6 7 8
ratio 0.368 0.420 0.457 0.486 0.509 0.528 0.545 0.559

4 Admissibility of inductive randomness predic-
tors

Let us say that an IRP P1 dominates an IRP P2 if P1 ≤ P2 (the p-value
output by P1 never exceeds the p-value output by P2 on the same data). The
domination is strict if, in addition, P1(z1, . . . , zn+1) < P2(z1, . . . , zn+1) for some
data sequence z1, . . . , zn+1.

An equivalent way to express the domination of P2 by P1 is to say that, at
each significance level, the prediction set output by P1 is a subset of (intuitively,
is at least as precise as) the prediction set output by P2. The strict domination
means that sometimes the prediction set output by P1 is more precise. An IRP
(in particular, an ICP) is inadmissible if it is strictly dominated by another IRP.
This is a special case of the standard notion of inadmissibility in statistics.

Proposition 5. Any inductive conformal predictor is inadmissible.

Proof. Let A be an inductive nonconformity measure; let us check that we can
improve on the corresponding ICP ΠA and define an IRP PA strictly dominating
ΠA. If A takes only one value, ΠA always outputs 1 and so is clearly inadmissible
(being strictly dominated by the ICP based on any inductive conformity measure
taking at least two distinct values). So let us assume that A takes at least two
distinct values, choose arbitrarily a ∈ (inf A, supA), and define P as

P (αl+1, . . . , αn+1) :={
mm

(m+1)m+1 if αn+1 > a and αi < a for all i ∈ {l + 1, . . . , n}
Π(αl+1, . . . , αn+1) otherwise.

By inequality (18), P can produce p-values that are impossible for ICPs.
It is easy to check that P is a p-variable:

� when ϵ ≥ 1
m+1 , Q

m+1(P ≤ ϵ) ≤ ϵ follows from Qm+1(Π ≤ ϵ) ≤ ϵ (since P

improves on Π only when Π = 1
m+1 ),
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� when ϵ < 1
m+1 , Q

m+1(P ≤ ϵ) ≤ ϵ follows from the fact that the probability

that Bm+1
p produces exactly one 1 and that the 1 is the last bit is given

by the left-most expression in (14).

It is also clear that PA strictly dominates ΠA.

It should be noted that Proposition 5 can be demonstrated in “uninteresting”
ways, which shows that our unrestricted requirement of admissibility is too
strong. For example, if an IRP is calibration-invariant, i.e., invariant w.r. to
the permutations of the calibration sequence (such as any ICP), it is easy to
improve it (in the sense of sometimes getting smaller p-values, not in any really
useful sense) by allowing dependence on the order of the calibration sequence.
In our proof the dominating IRP is at least still calibration-invariant.

The phenomenon of inadmissibility of ICPs demonstrated by our proof of
Proposition 5 is akin to the phenomenon of superefficiency in point estimation
(see, e.g., [12] and [14, Sect. 2] for reviews). We are making an ICP superefficient
at a nonconformity score that we choose arbitrarily, as in Hodges’s example [12,
Fig. 1]. In such situations the standard term “inadmissibility” also appears too
harsh.

5 Sequential inductive randomness predictors

In this section we will assume that the summary space S is a closed interval
(perhaps infinite in both directions, R, or in one direction, [c,∞) or (−∞, c]
for some c ∈ R). Our results will be easiest to interpret if the reader assumes
that the distribution of nonconformity scores A(z1, . . . , zl, Z) (where Z ∼ Q and
Qn+1 is the data-generating distribution) is continuous; in any case, this is what
we will assume in informal discussions.

A sequential inductive randomness predictor (SIRP) is determined by an
inductive nonconformity measure A and a 2D array (threshold array) (cK,I),
K ∈ {0, . . . ,m − 1} and I ∈ N1, of real numbers in S that is dense for each
K ∈ {0, . . . ,m− 1}:

∀K ∈ {0, . . . ,m− 1} : {c1,K , c2,K , . . . } = S. (21)

The SIRP is defined as follows. Let the conformal p-value, as defined in (1), be
(K+1)/(m+1). Now let I be the smallest index such that the test nonconformity
score and exactly K calibration nonconformity scores are above cK,I . Then the
p-value output by the SIRP is

SIRP(m,K, I) :=
K

m+ 1
+ max

(p0,...,pI)∈∆I

I∑
i=1

K∑
k=0

m!

(m−K)!(k + 1)!(K − k)!

(i−1∑
j=0

pj

)m−K

pk+1
i

( I∑
j=i+1

pj

)K−k

,

K ∈ {0, . . . ,m− 1}, I ∈ N1, (22)
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Table 2: Some p-values SIRP(9, 0, ·) for a calibration sequence of length m = 9
corresponding to the smallest conformal p-value of 10% for various values of I.

I 1 2 3 4 5 6 7 8
SIRP 3.87% 5.53% 6.46% 7.07% 7.49% 7.81% 8.05% 8.25%

I 9 10 11 12 13 14 99 100
SIRP 8.41% 8.54% 8.65% 8.75% 8.83% 8.90% 9.82% 9.83%

where ∆I is the standard I-simplex

∆I :=
{
(p0, . . . , pI) ∈ [0,∞)I+1 | p0 + · · ·+ pI = 1

}
.

If such I does not exist, set SIRP(m,K, I) := (K + 1)/(m + 1). The word
“above” in this definition can be either inclusive or exclusive, so that “αi is
above cK,I” may mean either αi > cK,I or αi ≥ cK,I . For concreteness, let us
use the latter meaning. Then “αi is below cK,I” means αi < cK,I .

The expression 00 in (22) is treated as 1. Therefore, the term in the sum∑I
i=1 corresponding to i = I only contains the term corresponding to k = K in

the sum
∑K

k=0, in which the factor (. . . )K−k can be ignored.

Remark 6. In principle, the definition (22) also works for K := m. However,
this case does not bring anything interesting: even in the extreme case I = 1,
the second line of (22) is easily seen to be 1/(m+ 1) (set k := K, p0 := 0, and
p1 := 1), and so SIRP(m,m, 1) = 1, which is a vacuous p-value.

Before studying SIRPs theoretically and even before proving that they are
bona fide IRPs, let us see how they work. Table 2 shows the p-values (22) that
they produce for a calibration sequence of length m = 9 when the conformal
p-value takes its smallest value 10%. In the case where the conformal p-value
takes its smallest value 1/(m+1), I is the smallest index such that all calibration
nonconformity scores are below c0,I and the test nonconformity score is above
c0,I , and the SIRP p-value (22) can then be written as

SIRP(m, 0, I) = max
(p0,...,pI)∈∆I

I∑
i=1

(i−1∑
j=0

pj

)m

pi. (23)

The smallest possible p-value for SIRPs corresponds to I = 1 and is 3.87%.
All p-values in the table are below 10%, and later we will see that each SIRP
strictly dominates the corresponding ICP.

Table 3 is the analogue of Table 2 for the second and third smallest confor-
mal p-values, 20% and 30%. For the conformal p-value of 2/(m + 1), I is the
smallest index such that the test nonconformity score and exactly one calibra-
tion nonconformity score are above c1,I , and the expression for the p-value can
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Table 3: Some p-values SIRP(9, 1, ·) and SIRP(9, 2, ·) for m = 9 corresponding
to the conformal p-value of 20% (row labelled K = 1) and 30% (row labelled
K = 2) for various values of I.

I 1 2 3 4 5 6 100
K = 1 13.02% 14.59% 15.56% 16.23% 16.72% 17.10% 19.74%
K = 2 22.67% 24.17% 25.14% 25.83% 26.34% 26.74% 29.70%

be slightly simplified to

SIRP(m, 1, I) =
1

m+ 1
+m max

(p0,...,pI)∈∆I

I∑
i=1

(i−1∑
j=0

pj

)m−1(
pi
2

+
I∑

j=i+1

pj

)
pi.

(24)
To see how SIRPs could be used for prediction, let us consider a very simple

and standard inductive nonconformity measure [17, (4.16)].

Example 7. Consider the problem of regression, Y := R, as in Example 2.
Train a regression model ĝ : X → R (such as a neural network) on z1, . . . , zl as
training sequence. Use A(z1, . . . , zl, x, y) := |y − ĝ(x)| as nonconformity mea-
sure, and set S := [0,∞). Let αi := |yi − ĝ(xi)|, i = l + 1, . . . , n, be the ith
calibration nonconformity score. Arrange these nonconformity scores in the as-
cending order, α(1) ≤ · · · ≤ α(m). Set ŷn+1 := ĝ(xn+1). These are the prediction
intervals Γϵ (see (8)) output by the SIRP based on a threshold array (cK,I) in S:

� First, it outputs all the conformal prediction intervals:

Γ
K+1
m+1 =

[
ŷn+1 − α(m−K), ŷn+1 + α(m−K)

]
.

� Let I0,1 be the smallest value of I such that c0,I ∈ (α(m),∞). (Such a
value of I, here and later in this list, will usually exist in view of the
density requirement (21).) Then the widest non-trivial prediction interval
is

ΓSIRP(m,0,I0,1) =
(
ŷn+1 − c0,I0,1 , ŷn+1 + c0,I0,1

)
.

� For j = 2, 3, . . . , let I0,j be the smallest value of I such that c0,I ∈
(α(m), c0,I0,j−1). Then the following prediction intervals are

ΓSIRP(m,0,I0,j) =
(
ŷn+1 − c0,I0,j , ŷn+1 + c0,I0,j

)
.

� For K = 1, . . . ,m− 1, let IK,1 be the smallest value of I such that cK,I ∈
(α(m−K), α(m−K+1)). Then

ΓSIRP(m,K,IK,1) =
(
ŷn+1 − cK,IK,1

, ŷn+1 + cK,IK,1

)
.
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� Finally, forK = 1, . . . ,m−1 and j = 2, 3, . . . , let IK,j be the smallest value
of I such that cK,I ∈ (α(m−K), cK,IK,j−1

). Then the remaining prediction
intervals are

ΓSIRP(m,K,IK,j) =
(
ŷn+1 − cK,IK,j

, ŷn+1 + cK,IK,j

)
.

If the required value I does not exist in any of these items, the correspond-
ing prediction interval ΓSIRP(m,K,IK,j) and any ΓSIRP(m,K,IK,j′ ) for j′ > j are
undefined.

In the context of Example 7, informal design principles for the thresh-
old array (cK,I) are: we would like c0,I to be concentrated right above the
typical values of the largest calibration nonconformity score α(m); we would
like cK,I , K = 1, 2, . . . , to be concentrated mostly inside a typical interval
(α(m−K), α(m−K+1)) and closer to α(m−K) for small I. To calculate the likely
intervals (α(m),∞) and (α(m−K), α(m−K+1)) we may use the proper training
sequence.

Now let us check that any SIRP is a bona fide IRP.

Lemma 8. Every SIRP is an IRP.

Proof. We are required to check that (22) is a p-value. For a given inductive
nonconformity measure A, we will:

� construct a nested family of events EK,I in Sm+1 covering the whole sam-
ple space Sm+1, with the lexicographic order on (K, I) ∈ {0, . . . ,m− 1}×
N1; formally, the requirement of being nested means that EK,I ⊆ EK′,I′

whenever (K, I) comes earlier than (K ′, I ′) in the lexicographic order;

� upper bound each PR(EK,I) by pK,I ;

� and finally define the SIRP via the aggregating p-variable

P (αl+1, . . . , αn+1) :=
p0,1 if (αl+1, . . . , αn+1) ∈ E0,1

pK,I if (αl+1, . . . , αn+1) ∈ EK,I \ EK,I−1 for I > 1 and any K

pK,1 if (αl+1, . . . , αn+1) ∈ EK,1 \ ∪I∈N1
EK−1,I

for I > 1 and any K > 0.

(Using general linear orders of this kind when defining p-variables is discussed
in detail in [10].)

The innermost nested set E0,1 is defined as the event that c0,1 separates the
test nonconformity score from the calibration nonconformity scores: αn+1 ≥
c0,1 while αi < c0,1 for all i ∈ {l + 1, . . . , n}. The probability of this event
under randomness is pm0 p1, where p0 is the probability that A(z1, . . . , zl, Z) ∈
(−∞, c0,1) and p1 is the probability that A(z1, . . . , zl, Z) ∈ [c0,1,∞). This allows
us to define

SIRP(m, 0, 1) = max
(p0,p1)∈∆1

pm0 p1,
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in agreement with (22).
For a given I ∈ N1, the event E0,I is defined as one of c0,1, . . . , c0,I sepa-

rating the test nonconformity score from the calibration nonconformity scores.
Let c(1), . . . , c(I) be the sequence c0,1, . . . , c0,I sorted in the ascending order;
we extend it by setting c(0) := −∞ and c(I+1) := ∞. The probability of
the conjunction of the separation and the test nonconformity score lying in
[c(i), c(i+1)) is equal to (p0 + · · · + pi−1)

mpi, where pj is the probability of
A(z1, . . . , zl, Z) ∈ [c(j), c(j+1)). This allows us to set

SIRP(m, 0, I) =

max
(p0,...,pI)∈∆I

(pm0 p1 + (p0 + p1)
mp2 + · · ·+ (p0 + · · ·+ pI−1)

mpI) ,

which again agrees with (22).
Now we assume K ≥ 1. Let us say that c ∈ R K-separates the test non-

conformity score αn+1 from the calibration nonconformity scores αl+1, . . . , αn

if αn+1 ≥ c and there are exactly K αi, i ∈ {l + 1, . . . , n}, such that αi ≥ c (so
that separation, as defined above, corresponds to 0-separation). The event EK,I

is defined as the disjunction of the conformal p-value being at most K/(m+ 1)
and the test nonconformity score being K-separated from the calibration non-
conformity scores by an element of the set {cK,1, . . . , cK,I}.

We proceed by induction in K, assuming that (22) works for K ′ < K in
place of K. We also assume that the nonconformity score A(z1, . . . , zl, Z) has
a continuous distribution; this does not lead to any loss of generality, as will
be explained later. The event ∪IEK−1,I coincides with the conformal p-value
being at most K/(m + 1), since the threshold array was supposed to be dense
in S for each K.

The first addend in (22) corresponds to the probability of ∪IEK−1,I under
any continuous power probability measure Qn+1 on Sm+1. Let us check that
the term in the second line of (22) corresponds to the probability of the event

E′
K,I := EK,I \ ∪IEK−1,I

that an element of cK,1, . . . , cK,I (or equivalently, of c(1), . . . , c(I), which are
cK,1, . . . , cK,I rearranged in the ascending order, as above) K-separates the test
nonconformity score (from the calibration nonconformity scores). The index
i in (22) stands for the part of E′

K,I corresponding to αn+1 ∈ [c(i), c(i+1)),
and the index k stands for the part of that part corresponding to there being
exactly k calibration nonconformity scores αj , j ∈ {l + 1, . . . , n}, such that
αj ∈ [c(i), c(i+1)) and αj ≥ αn+1. The second line of (22) is obtained by the
multiplication of several terms:

� the probability that exactly m −K calibration nonconformity scores are
below c(i) is (

m

m−K

)(i−1∑
j=0

pj

)m−K

;
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� the probability that exactly K − k of the remaining K calibration non-
conformity scores are above c(i+1) is(

K

K − k

)( I∑
j=i+1

pj

)K−k

;

� the probability that the remaining k calibration nonconformity scores and
the test nonconformity score are in [c(i), c(i+1)) is p

k+1
i ;

� the conditional probability (given the event in the previous item) that all
those k calibration nonconformity scores are above the test nonconformity
score is ∫ 1

0

xk dx =
1

k + 1
.

Let us check that we can make the assumption of continuity of the probabil-
ity measure generating nonconformity scores without loss of generality. By [8,
Lemma A.23] the calibration and test nonconformity scores, as long as we are
interested in their joint distribution, can be assumed to be obtained by applying
the same increasing function to IID random variables ξl+1, . . . , ξn+1 distributed
uniformly in [0, 1]. We can compute the p-values from ξl+1, . . . , ξn+1 in place
of αl+1, . . . , αn+1, in which case the values (22) can only decrease. Since even
these smaller values are p-values, the original values are p-values as well.

The simplified expression (24) follows from (22), and it can also be inter-
preted directly.

To apply a SIRP predictor, we need the function SIRP of three variables,
m, K, and I, defined by (22). Hopefully, for sizeable m the dependence on m
will be very predictable; we find a few asymptotic expressions in the following
proposition. If SIRPs are ever used in practice, it makes sense to make the
sequence cK,1, cK,2, . . . finite and short for each K. We can say least about the
dependence on K.

Proposition 9. The function SIRP(m,K, I) defined by (22) has the following
properties.

� It is increasing in K and I,

SIRP(m,K, I) ∈
(

K

m+ 1
,
K + 1

m+ 1

]
, and (25)

SIRP(m,K,∞) =
K + 1

m+ 1
. (26)

� Finally,

SIRP(m, 0, 2) ∼ exp(e−1 − 1)

m
≈ 0.531

m
as m → ∞. (27)
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The limit (26) as I → ∞ corresponds to ignoring the parameter I in sequential
inductive randomness prediction, i.e., to inductive conformal prediction. The
approximation 0.531 in (27) roughly agrees with the value 5.53% given in Ta-
ble 2 (when m = 19, that value becomes 5.42%, and so the agreement becomes
better).

Proof of Proposition 9. The monotonicity of SIRP is obvious. The first equality,
(26), follows from our density assumption (21).

Let us check (27). For K = 0 and I = 2 our optimization problem (23) can
be written as

pm0 (1− p0 − p2) + (1− p2)
mp2 → max (28)

(after substituting 1 − p0 − p2 for p1). Setting the partial derivatives of the
objective function in p0 and p2 to 0 we obtain

p0 = 1 +
e−1 − 2

m
+O(m−2), p2 =

1− e−1

m
+O(m−2)

(so that p0+p2 < 1 asymptotically, as it should). Plugging this into the objective
function in (28) gives

SIRP(m, 0, 2) =

(
1 +

e−1 − 2

m
+O(m−2)

)m(
1

m
+O(m−2

)
+

(
1 +

e−1 − 1

m
+O(m−2)

)m(
1− e−1

m
+O(m−2

)
=

exp(e−1 − 2)

m
+

exp(e−1 − 1)(1− e−1)

m
+O(m−2)

=
exp(e−1 − 1)

m
+O(m−2).

Now let us state formally that the SIRP based on an inductive nonconformity
measure A dominates the ICP based on A as corollary of Proposition 9. It is then
obvious than the domination is usually strict, which once again demonstrates
the inadmissibility of typical ICPs.

Corollary 10. Let A be an inductive nonconformity measure. The SIRP based
on A dominates the ICP based on A.

Proof. The statement of the corollary follows from (25).

However, even SIRPs are typically inadmissible and strictly dominated
by a calibration-invariant IRP. Indeed, take any SIRP and any sequence
αl+1, . . . , αn+1 of distinct nonconformity scores such that αn+1 is the largest
number in this sequence and c0,1 separates it from the calibration nonconformity
scores. The maximum power probability Qn+1 of the set{

(απ(l+1), . . . , απ(n), αn+1) | π ∈ Sym({l + 1, . . . , n})
}
⊆ Sm+1 (29)
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is
m!

(m+ 1)m+1
∼
√
2π/m e−m−1,

which is much smaller, for a large m, than the smallest p-value attainable by a
SIRP. Therefore, we can improve the given SIRP by redefining the p-value on
the set (29).

Remark 11. The non-trivial second addend in the function (22) is defined as the
maximum of a homogenous polynomial of degree m + 1 over the unit simplex
∆I . This polynomial is not convex in general, as can be seen by differentiating
the polynomial p20p1 that is maximized in SIRP(2, 0, 1) (for simplicity, replace
p1 by 1− p0). Despite the lack of convexity, this is a well-studied problem. The
problem is NP-complete already for quadratic polynomials, but there are PTAS
(polynomial-time approximation schemes) for a fixed m. (See [5–7].)

6 Conclusion

In this paper we have defined inductive randomness predictors and started their
study. Whereas inductive conformal predictors are inadmissible and are domi-
nated by SIRPs, it remains unclear whether SIRPs, or other dominating induc-
tive randomness predictors, can be more useful in practice. A related theoretical
question is how to define a suitable weakened notion of admissibility and apply
it usefully to dominating inductive randomness predictors.

A cheap way to improve on ICPs is to use randomization; the resulting
smoothed ICPs [17, Sect. 4.2.1] dominate the corresponding ICPs. We will dis-
cuss smoothed IRPs in Appendix B, but in this version of the paper we will
concentrate on smoothed BIRPs. Allowing randomization in SIRPs is poten-
tially more interesting.
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A Universal threshold array

It is not clear how to choose the threshold array for use in sequential induc-
tive randomness prediction, and in this appendix we will discuss the universal
choice adapting the notion of Kolmogorov complexity (see, e.g., [11, Sect. 1.1]).
The usual notion of Kolmogorov complexity is binary, but here it will be more
convenient to use the unary version (binary complexity coincides, to within an
additive constant, with the binary logarithm of unary complexity).

A description mode is a computably enumerable set D of quintuples
(m,K, I, a, b) ∈ N1 × N0 × N1 × Q2 such that K < m and a < b, where
Q is the set of rational numbers. The unary (Kolmogorov) D-complexity
UD(c | m,K) of a real number c given m and K is the smallest I such that

{c} = ∩{(a, b) | (m,K, I, a, b) ∈ D}. (30)

There is a description mode D (called universal) such that for any other de-
scription mode D′ there exists B > 0 such that

∀c ∈ R,m ∈ N1,K ∈ {0, . . . ,m− 1} : UD(c | m,K) ≤ BUD′(c | m,K).

Let us fix a universal description mode D and call U(c | m,K) := UD(c | m,K)
the unary complexity of c given m and K. For any set C ⊆ R of real numbers
define

U(C | m,K) := inf
c∈C

U(c | m,K).

For simplicity, let us fix m. With the universal description mode D we can
associate the threshold array (cK,I) (universal threshold array) whose elements
are allowed to take value ∞; namely, we define cK,I as the only element of
the set on the right-hand side of (30) if that set is a singleton; otherwise, we
set cK,I := ∞. Let αl+1, . . . , αn+1 be a sequence of calibration nonconformity
scores extended by a test nonconformity score. Then the SIRP based on (cK,I)
and fed with these nonconformity scores outputs SIRP(m,K,U((αn+1, α

′])) as
its p-value, where

K := |{i ∈ {1, . . . , n} | αi ≥ αn+1}| ,
α′ := min {αi | i ∈ {l + 1, . . . , n} & αi ≥ αn+1}
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(if α′ = αn+1, the SIRP p-value is simply the conformal p-value (K+1)/(m+1)).
The expression SIRP(m,K,U((αn+1, α

′])) illustrates the difference between
the conformal and SIRP p-values. The conformal p-value (K + 1)/(m + 1)
only depends on the order of nonconformity scores. The SIRP p-value depends,
additionally, on how easy it is to separate the test nonconformity score from the
K largest calibration nonconformity scores. The size of the margin of separation
(αn+1, α

′] is measured by its unary complexity.
We can regard approximating the universal threshold array to be an informal

design principle for threshold arrays. Ideally, in the definition of U(c | m,K)
we should condition, in addition to the length m of the calibration sequence, on
all other known relevant features of our prediction problem, such as the proper
training sequence and the chosen inductive nonconformity measure. The uni-
versal threshold array will then satisfy the informal design principles discussed
after Example 7.

B Smoothed BIRPs

In the main part of the paper we only discussed deterministic predictors, while
randomized (“smoothed”) conformal predictors [17, Sect. 2.2.6] produce smaller
p-values and, therefore, are more predictively efficient. Adding randomization to
prediction procedures is often regarded as objectionable, and so discussing ran-
domized predictors is relegated to this appendix. Randomization significantly
complicates discussions of predictive efficiency and admissibility.

The smoothed inductive conformal predictor (SICP) based on an inductive
nonconformity measure A outputs the prediction p-function

f(y) :=
|{j = l + 1, . . . , n+ 1 | αj > αn+1}|

m+ 1

+ τ
|{j = l + 1, . . . , n+ 1 | αj = αn+1}|

m+ 1
∈ [0, 1] ,

where the αs are defined as before, by (2) and (3), and τ ∼ U is a random
number generated from the uniform probability measure U on [0, 1]. This will
be a special case of smoothed inductive randomness predictors, which we define
next.

A randomized aggregating p-variable is a measurable function P : [0, 1] ×
Sm+1 → [0, 1] such that

∀ϵ ∈ (0, 1) ∀Q ∈ P(S) : (U ×Qm+1)({P ≤ ϵ}) ≤ ϵ.

The smoothed inductive randomness predictor (SIRP) based on an inductive
nonconformity measure A and a randomized aggregating p-variable P is defined,
similarly to the IRP, by

PA(τ, z1, . . . , zn+1) := P (τ, αl+1, . . . , αn+1),
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where the αs are defined by (6). Instead of (7), the SIRP PA outputs the
prediction p-function

f(y) = f(y; τ, z1, . . . , zn, xn+1) := PA(τ, z1, . . . , zn, xn+1, y),

where τ ∼ U . To embed the class of SICPs into the class of SIRPs, we set,
analogously to (9),

Π(τ, αl+1, . . . , αn+1) :=
|{j = l + 1, . . . , n+ 1 | αj > αn+1}|

m+ 1

+ τ
|{j = l + 1, . . . , n+ 1 | αj = αn+1}|

m+ 1
.

Then the SICP based on A is identical to the SIRP ΠA.
A convenient way to generate randomized aggregating p-variables is to use

aggregating functions B : Sm+1 → R, as defined earlier. The corresponding
aggregating p-variable will be the following variation on (10):

PB(τ, αl+1, . . . , αn+1) := sup
Q∈P(S)

(
Qm+1 ({B > B(αl+1, . . . , αn, αn+1)})

+ τQm+1 ({B = B(αl+1, . . . , αn, αn+1)})
)
. (31)

Proposition 12. The function PB defined by (31) is a randomized aggregating
p-variable.

Proof. Let us define a function g : R× [0, 1] → [0, 1] by

g(b, τ) := sup
Q∈P(S)

(
Qm+1 ({B > b}) + τQm+1 ({B = b})

)
(cf. (31)). It is clear that g(b, τ) is decreasing in b and increasing in τ . It also
satisfies the following two useful properties.

Lemma 13. For all b, g(b, 0) = supb′>b g(b
′, 1) = supb′>b g(b

′, 0).

Proof. Take any δ > 0. Choose Q ∈ P(S) such that Qm+1({B > b}) > g(b, 0)−
δ. Then, for some b′ > b, Qm+1({B ≥ b′}) > g(b, 0) − δ. Finally, the last
inequality implies g(b′, 1) > g(b, 0)− δ.

Lemma 14. As function of τ , g(b, τ) is continuous.

Proof. Suppose g(b, ·) makes a jump at some point τ0 ∈ [0, 1]. For an arbitrarily
small δ > 0, take any τ1 ∈ [τ0, τ0 + δ] and choose Q ∈ P(S) satisfying

Qm+1({B > b}) + τ1Q
m+1({B = b}) > g(b, τ1)− δ.

Then, for any τ2 ∈ [τ0 − δ, τ0],

g(b, τ2) ≥ Qm+1({B > b}) + τ2Q
m+1({B = b})
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≥ Qm+1({B > b}) + τ1Q
m+1({B = b})− 2δ

> g(b, τ1)− 3δ.

Since δ can be arbitrarily small, the inequality between the extreme terms of
this chain leads to a contradiction.

Now we can prove the statement of the proposition. Fix ϵ ∈ (0, 1) and set

b := inf{b′ | g(b′, 0) ≤ ϵ}.

By Lemma 13, g(b, 0) ≤ ϵ, and we know that g(b′, 0) > ϵ for all b′ < b. Let us
consider two cases.

First we consider the presumably typical case where g(b, 0) ≤ ϵ ≤ g(b, 1).
Choose τ0 satisfying g(b, τ0) = ϵ. Make it as large as possible if such τ0 is
not unique (this step uses Lemma 14). Then the set {PB ≤ ϵ} consists of
(τ, αl+1, . . . , αn+1) at which B > b or both B = b and τ ≤ τ0. The supremum
U ×Qm+1-probability of this set is g(b, τ0) = ϵ.

It remains to consider the case g(b, 0) ≤ g(b, 1) < ϵ. Then the set {PB ≤ ϵ}
consists of (τ, αl+1, . . . , αn+1) at which B ≥ b. The supremum U × Qm+1-
probability of this set is g(b, 1) < ϵ.

Remark 15. Proposition 12 is applicable to any statistical model, not just the
randomness model {Qm+1 | Q ∈ P(S)}.

We will say that the SIRP PA,B := (PB)A is based on A and B, where A is
an inductive nonconformity measure and B is an aggregating function.

Proposition 4 can be generalized to the smoothed case, but the calculations
become messier for K > 1.

Proposition 16. Suppose that a binary sequence αl+1, . . . , αn contains K < m
1s and that αn+1 = 1. Then the aggregating function B defined by (12) leads to
the smoothed p-value

PB(τ, αl+1, . . . , αn+1) =

max
p∈[0,1]

(
K−1∑
k=0

(
m

k

)
pk+1(1− p)m−k + τ

(
m

K

)
pK+1(1− p)m−K

)
. (32)

In particular, for K = 0, the smoothed p-value (32) is

τ
mm

(m+ 1)m+1
∼ τ

exp(−1)

m
≈ 0.37τ

m
.

Let us check that SICPs are inadmissible. As in the proof of Proposition 5,
we can improve ΠA to PA, where

P (τ, αl+1, . . . , αn+1) :={
τ mm

(m+1)m+1 if αn+1 > a and αi < a for all i ∈ {l + 1, . . . , n}
Π(τ, αl+1, . . . , αn+1) otherwise.
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Checking the domination reduces to checking the inequality

τ
mm

(m+ 1)m+1
<

τ

m+ 1
,

which is obvious.
We have not discussed smoothed SIRPs, and, as mentioned in Sect. 6, this

is an interesting direction of further research.
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