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Abstract

We discuss systematically two versions of confidence regions: those based on
p-values and those based on e-values, a recent alternative to p-values. Both
versions can be applied to multiple hypothesis testing, and in this paper we
are interested in procedures that control the number of false discoveries under
arbitrary dependence between the base p- or e-values. We introduce a procedure
that is based on e-values and show that it is efficient both computationally
and statistically using simulated and real-world datasets. Comparison with the
corresponding standard procedure based on p-values is not straightforward, but
there are indications that the new one performs significantly better in some
situations.

The journal version of this paper is to appear in Statistical Science. This version
has been further revised.
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1 Introduction

Starting from the introduction of confidence regions in the work of Jerzy Neyman
[1934], confidence estimation and hypothesis testing have been regarded as dual
tasks. We start our discussion from hypothesis testing and then extend it to
confidence estimation.

The usual approaches to hypothesis testing and confidence estimation are
based on p-values, but our emphasis will be on alternative approaches based on
e-values, as discussed in, e.g., Shafer [2021] (who uses “betting score” for our
“e-value”), Shafer and Vovk [2019, Section 11.5] (who use “Skeptic’s capital”),
Grünwald et al. [2020], and Vovk and Wang [2021] (who proposed the term
“e-values”).

E -values can be defined as values taken by e-variables, and an e-variable is
a random variable taking values in [0,∞] whose expectation is at most 1 under
the null hypothesis. In many areas of statistics e-variables appear naturally
as likelihood ratios: if Q is a simple null hypothesis and Q′ is an alternative
probability measure, the Radon–Nikodym derivative dQ′/ dQ is an e-variable.
In Bayesian statistics, Q or Q′ or both may be defined as marginal probability
measures for Bayesian models, in which case likelihood ratios are known as Bayes
factors. The fundamental monograph treating Bayes factors is Jeffreys’s [1961];
see, e.g., Ly et al. [2016] for a recent appreciation. The notions of e-values
and Bayes factors coincide for simple null hypotheses but diverge for composite
ones (for e-variables, the expectation should be at most 1 under any probability
measure in the null hypothesis).

The existing statistical methods are often divided into Bayesian and clas-
sical (we will say more about the latter in Section 3). While p-values are the
standard classical tool of hypothesis testing, Bayes factors are the standard
Bayesian tool [Benjamini et al., 2021]. One way of looking at e-values is as a
way of modelling Bayes factors inside classical statistics inasmuch as they do
not require prior distributions for their definition. This hints at the difficulty of
comparisons between results based on p-values and those based on e-values; it is
a manifestation of the oft-acknowledged chasm between classical and Bayesian
statistics.

Roughly, the Bayesian interpretation of an e-variable dQ′/ dQ is that, when
deciding between Q′ and Q as possible explanations for the data and observing a
very large e-value, the optimal decision is to reject Q unless the prior probability
of Q is high or a mistaken rejection of Q is much more costly than a mistaken
rejection of Q′ (see Bernardo and Smith [2000, Proposition 6.1] for a precise
decision-theoretic statement).

Another important and popular source of e-values, especially in the context
of sequential observations, is e-processes, which are stochastic processes (Et)t≥0

such that Eτ is an e-variable for any stopping time τ (with respect to a pre-
specified filtration); see, e.g., Shafer and Vovk [2019], Grünwald et al. [2020],
Vovk and Wang [2021], and Wang and Ramdas [2022]. The use of e-processes
ensures validity under optional stopping and allows sequential update of sta-
tistical evidence. These advantages are discussed extensively in the existing
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literature and are not the focus of this paper.
If E is an e-variable and α > 1, Markov’s inequality implies that, under the

null hypothesis, E ≥ α with probability at most 1/α. Therefore, observing a
large value of E provides evidence against the null hypothesis in classical statis-
tics as well. In typical uses of e-values, however, we are not given a threshold α
in advance (or ever), and simply regard an e-value as the strength of evidence
against the null.

The defining property of a p-value is that it is α or less with a probability of
at most α. This definition involves a quantifier over thresholds α and sometimes
is considered misleading in situations where no threshold α is fixed in advance.
There have been proposals to turn (“calibrate”) p-values into Bayes factors
[Sellke et al., 2001] to help intuition, and Jeffreys [1961, Appendix B] proposes an
informal correspondence between p-values and Bayes factors; both can be used
for establishing connections between p-values and e-values. Ways of turning p-
values into e-values and vice versa have been systematically discussed in Vovk
and Wang [2021, Section 2] and are the topic of Section 3. They provide ways
of comparing results based on e-values and p-values, albeit crude ones.

An area of statistics where we can see both e-values and p-values in action
is controlling the number of false discoveries in multiple hypothesis testing. A
known procedure of controlling the number of false discoveries [Genovese and
Wasserman, 2004; Goeman and Solari, 2011a; Goeman et al., 2019b], which we
call the GWGS procedure, uses p-values, but it can be easily adapted to e-values.
In this paper we demonstrate the performance of both versions.

Both versions of the GWGS procedure control the number of false discoveries
in a stronger sense than the well-known procedure of Benjamini and Hochberg
[1995] controlling the false discovery rate (FDR). Whereas FDR is the expected
value of the false discovery proportion, the GWGS procedure provides upper
confidence bounds on the number of false discoveries. Procedures that control
FDR using e-values are studied by Wang and Ramdas [2022].

The GWGS procedure involves, at least implicitly, merging several p-values
into a single p-value. Merging p-values is difficult: see, e.g., Vovk and Wang
[2020a]; Vovk et al. [2022]. The situation with e-values is radically different:
arithmetic averaging is essentially the only symmetric method of merging [Vovk
and Wang, 2021, Proposition 3.1]. This contrast shows in the observation that
the e-version of the GWGS procedure produces seemingly better results than
the p-version; we cannot be more categorical since comparison between p-values
and e-values is not straightforward.

We start the main part of the paper by discussing testing in Sections 2 and 3,
defining confidence regions in Section 4, and repackaging them as necessity
measures in Section 5. In Section 6 we introduce the e-version of the GWGS
procedure, postponing the p-version to an appendix. A special case that is
easy to visualize is introduced under the name of discovery e-matrices. In
Sections 7 and 8 we demonstrate the advantages of the e-version in simulation
and empirical studies, respectively. In Section 9 we give its computationally
efficient implementation. Section 10 concludes.

The main content of the paper is complemented by five appendixes, A–E.
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Appendix A contains some further information on a toy example in the main
paper. Appendix B explores other procedures of controlling false discoveries
with e-values, including the one based on a Bonferroni-type procedure of merg-
ing e-values. If the goal is family-wise validity, such procedures (including the
one in Holm [1979]) usually work very well, but if the goal is to control the
number of false discoveries, they work much worse than arithmetic averaging.
In this appendix we also discuss a Simes-type procedure based on e-values. Ap-
pendix C makes connections with Goeman and Solari’s [2011a] work explicit.
As Hemerik et al. [2019, Supplementary material] explain, the method of Goe-
man and Solari [2011a] is equivalent to a method in Genovese and Wasserman
[2004]. Appendix D points out the importance of generalized Bayes factors.
Finally, Appendix E summarizes results of further biomedical studies related to
the dataset that we use in Section 8.

2 Three approaches to hypothesis testing

The basic principle of hypothesis testing is sometimes referred to as Cournot’s
principle [Shafer, 2007]. Augustin Cournot’s bridge between probability theory
and the world is that if a given event has a small probability, we do not expect
it to happen. It is shown at the top of Figure 1 and has entered (without
its name) countless statistics textbooks: the simplest approach to hypothesis
testing consists in selecting a priori a critical region A of a small probability
under the null hypothesis and rejecting the null hypothesis when A happens.
Cournot’s principle is the basis of the classical approach to statistics; it was
known to and used by James Bernoulli [1713], and Cournot’s [1843] contribution
was to say that this is the only bridge.

Figure 1: Cournot’s principle and its two generalizations

We are mostly interested in two generalizations of Cournot’s principle. To
give formal definitions, we fix a measurable space (Ω,A). This is our sample
space; to complete it to a probability space we need a probability measure
Q ∈ P(Ω), where P(Ω) is the set of all probability measures on (Ω,A).

A statistical model is a family (Qθ | θ ∈ Θ) of probability measures on
(Ω,A). We do not require measurability, in any sense, of Qθ in θ; in particular,
the parameter space Θ is just a set (not a measurable space). We are mostly
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interested in the case where Θ = P(Ω) and Qθ = θ for all θ ∈ Θ, but in the
first few sections our exposition will be general, which may make our definitions
more familiar to some of the readers. For a given parameter θ ∈ Θ, we have
the notion of expectation Eθ(E) :=

∫
E dQθ ∈ [0,∞] for each extended random

variable E taking nonnegative values (we call it “extended” since it may take
value ∞) and the notion of probability Pθ(A) := Eθ(1A) = Qθ(A) for each event
A ∈ A.

A simple statistical hypothesis is an element θ of Θ. A statistical hypothesis
(or composite statistical hypothesis, or simply hypothesis) is a set H ⊆ Θ of
parameters. We embed the simple statistical hypotheses into the composite
statistical hypotheses by identifying θ ∈ Θ with the corresponding singleton
{θ} ⊆ Θ. We will say “null hypothesis” to emphasize that we are interested in
whether the hypothesis should be rejected in view of the data ω ∈ Ω.

We already mentioned that the most basic way of testing a simple hypothesis
θ ∈ Θ is to choose a critical region A ∈ A with probability Pθ(A) ≤ α, α (the
size) being a small positive number, and to reject the hypothesis θ at level α
after observing an outcome ω ∈ A. A disadvantage of this way of testing is
that it is binary; either we completely reject the null hypothesis or we find no
evidence whatsoever against it. We will discuss two ways to graduate the notion
of a critical region: the classical one using p-values and a more recent one using
e-values.

A p-variable for testing a simple hypothesis θ is a nonnegative random vari-
able P such that, for any α ∈ (0, 1), Pθ(P ≤ α) ≤ α. For each threshold α
we have a critical region {P ≤ α}, and a p-variable provides a nested family
of critical regions. An e-variable for testing a simple hypothesis θ ∈ Θ is a
nonnegative extended random variable E such that Eθ(E) ≤ 1.

Suppose we are testing a simple null hypothesis θ (it might correspond to a
default parameter value). In p-testing, we choose a p-variable P in advance and
reject the null hypothesis θ when the observed value P (ω) of P (the p-value)
is small, and in e-testing, we choose an e-variable E in advance and reject the
null hypothesis θ when the observed value E(ω) of E (the e-value) is large. In
both cases, we get a measure of the amount of evidence found against the null
hypothesis.

We can embed basic testing into both p-testing and e-testing: namely, to
each critical region A corresponds the p-variable

P (ω) :=

{
α if ω ∈ A

1 if not
(1)

and e-variable

E(ω) :=

{
1/α if ω ∈ A

0 if not,
(2)

where α is the size of the critical region A. These two random variables carry the
same information as A. This justifies the two arrows marked “generalization”
in Figure 1.
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The special case of basic testing corresponds to concentrating on only one
threshold, denoted α in the case of p-values, (1), and 1/α in the case of e-values,
(2). It is instructive to see how we could extend the basic p-variable (1) and the
basic e-variable (2). It is easy to extend (1); e.g., we can take another critical
region A′ ⊃ A of size α′ > α and define a p-variable,

P (ω) :=


α if ω ∈ A

α′ if ω ∈ A′ \A
1 if ω ∈ Ω \A′,

that strongly dominates (1). As it were, for each α we have a separate budget
of α that can be spent on a critical region. On the other hand, there is no way
to improve the e-variable (2) in a non-trivial way (make it larger on a set of
positive probability). Now we have a single budget of 1, which has been fully
spent in (2).

The definitions of critical regions, p-variables, and e-variables extend to
the case of composite hypotheses as follows. A critical region of size α for a
composite hypothesis H is an event A ∈ A satisfying Pθ(A) ≤ α for all θ ∈ H.
A p-variable for testing a composite hypothesis H is a nonnegative random
variable P such that, for any α ∈ (0, 1), Pθ(P ≤ α) ≤ α for all θ ∈ H. And an
e-variable for testing a composite hypothesis H is an extended nonnegative E
satisfying Eθ(E) ≤ 1 for all θ ∈ H.

While p-variables (referred to as valid p-values in Casella and Berger [2002,
Definition 8.3.26]) are standard, e-variables [Shafer, 2021; Vovk and Wang, 2021]
have not been used widely.

Observing a small p-value or a large e-value provide evidence against H.
It is convenient to have conventional thresholds for p-values and e-values. For
p-values, the standard thresholds are 1% and 5%, and they go back to Fisher.
If p ≤ 0.05, we say that the evidence against the null hypothesis is significant,
and if p ≤ 0.01, we say that the evidence is highly significant. For e-values, we
will use Jeffreys’s [1961, Appendix B] rule of thumb:

� If the e-value is below 1, the null hypothesis is supported. In our plots
(such as in Figure 3 below) in the experimental sections, 7 and 8, such
e-values will be shown in dark green.

� If the e-value is in the interval (1,
√
10) ≈ (1, 3.16), the evidence against

the null hypothesis is not worth more than a bare mention. Such e-values
will be shown in green.

� If the e-value is in (
√
10, 10) ≈ (3.16, 10), the evidence against the null

hypothesis is substantial. Shown in yellow.

� If it is in (10, 103/2) ≈ (10, 31.6), the evidence against the null hypothesis
is strong. Shown in red.

� If it is in (103/2, 100) ≈ (31.6, 100), the evidence against the null hypothesis
is very strong. Shown in dark red.
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Figure 2: The p-values (black solid lines) and e-values on the decimal log scale
for testing the null hypothesis N(0, 1). Left panel: for the signed χ alternatives.
Right panel: for the alternatives in the family N(µ, 1).

� If the e-value exceeds 100, the evidence is decisive. Shown in black.

Fisher’s and Neyman–Pearson’s views of testing

A common view is that, in our terminology, Fisher preferred p-testing, whereas
Neyman preferred basic testing (with the null hypothesis complemented by an
alternative hypothesis). The full story is, however, more complex: see, e.g.,
Lehmann [2011, Section 4.4].

Fisher’s interpretation of hypothesis testing was in terms of a disjunction
[Fisher, 1973, Section III.1]. If A is a critical region of a small size α and we
observe an outcome in A, then either the null hypothesis is wrong or “a rare
chance has occurred”. To avoid any frequentist connotations, we may express it
in the equivalent form the null hypothesis is wrong unless the outcome is strange
(“unless” being one of the ways to express the idea of disjunction [Kleene, 1967,
Section 14]). A similar interpretation is applicable to p-values and e-values:
e.g., if we observe a large e-value, then the null hypothesis is wrong unless the
outcome is strange.

In Neyman and Pearson’s approach to hypothesis testing, a big role is played
by alternative hypotheses. In e-testing, the notion of an alternative hypothesis
plays a less independent role: choosing an e-variable E can often be interpreted
as choosing an alternative hypothesis in such a way that E is the likelihood
ratio of the alternative hypothesis to the null [Shafer, 2021, 2.2].

A toy example

Let us see how these definitions work in a simple example. We would like to
test the null hypothesis x ∼ N(0, 1) given an observation x ∈ Ω := R. Suppose
we believe that |x| reflects the amount of evidence against the null hypothesis.
Therefore, we will be interested in p-variables P (x) and e-variables E(x) that
depend on x only via |x| and are monotonic functions (increasing for E and
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decreasing for P ) of |x|. There is a unique p-variable P (uniformly distributed
on [0, 1]) satisfying this property, namely P (x) := 2Φ(−|x|), where Φ is the
standard Gaussian distribution function. On the other hand, there is a huge
variety of e-variables satisfying this property. A natural class of such e-variables
is

E(x) :=
|x|d

π−1/22d/2Γ
(
d+1
2

) , d > 0, (3)

where the denominator is just the normalizing constant ensuring
∫
E dN(0, 1) =

1 (the dth absolute moment of the standard Gaussian distribution, which is well
known and easily found by direct integration).

Figure 2 gives the p-values as the black solid line in both panels and gives
the e-values for d ∈ {2, 10, 50} in the left panel. On Fisher’s scale, p-values
are significant when their decimal logarithms drop below log10 0.05 and highly
significant when they drop below −2; these levels are shown as thin black lines.
Jeffreys’s levels 0.5, 1, 1.5, and 2 for e-values on the log10 scale are shown as
thin orange lines. The e-variables are not comparable, in the sense that none
of them dominates any other everywhere.

Each of the e-variables in the left panel of Figure 2 defines an alternative to
the null hypothesis, as discussed above, so that the e-variable becomes the like-
lihood ratio of the alternative to the null hypothesis. The alternative hypothesis
corresponding to (3) has the density proportional to |x|d exp(−x2/2). Since x
ranges over R, it is not exactly the χ density with d + 1 degrees of freedom,
which we will denote χd+1, but it is a slight variation: after generating x from
χd+1, we change its sign (i.e., multiply it by −1) with probability 1/2. We will
call this alternative distribution the signed χd+1 distribution; for d = 2 this is
the signed Maxwell–Boltzmann distribution, which is abbreviated to “M.-B.” in
the legend in the left panel of Figure 2.

The signed χ alternatives, corresponding to E(x) ∝ |x|d, appear to be the
simplest unconstrained choice, but a more standard approach is to look for
alternatives inside a parametric family of distributions. Let us embed N(0, 1)
into the statistical model N(µ, 1), µ ∈ R (there are other natural embeddings,
and in Appendix A we will also discuss the embedding into the statistical model
N(0, σ2), σ > 0). The right panel of Figure 2 shows three more e-variables,
which are based on the likelihood ratios

E(δ)(x) :=
dN(δ, 1)

dN(0, 1)
(x) =

exp(−(x− δ)2/2)

exp(−x2/2)
= exp(δx− δ2/2). (4)

To obtain an e-variable that depends on x only via |x|, let us average E(δ) and
E(−δ):

Ē(δ)(x) :=
E(δ)(x) + E(−δ)(x)

2
. (5)

The right panel of Figure 2 shows Ē(1), Ē(3), and Ē(5).
Four points are indicated in the right panel to illustrate the interpretation

of our plots. The points A1 and A2 are at the intersection of the graph of the
p-variable with the horizontal line at level −2, and the points B1 and B2 are at
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the intersection of the graph of the e-variable with δ := 3 with the horizontal
line at level 2. The x-coordinates of the points A1 and A2 are approximately
±2.58, and the x-coordinates of the points B1 and B2 are approximately ±3.27.
The observations x with |x| exceeding (approximately) 3.27 provide decisive ev-
idence against the null hypothesis N(0, 1), and the other observations do not,
according to Jeffreys’s scale. Similarly, the observations x with |x| exceeding
(approximately) 2.58 provide highly significant evidence against the null hy-
pothesis N(0, 1), while the other observations do not, according to Fisher’s
scale. Using similar interpretation for the left panel, we can see, e.g., that the
e-variable for d = 2 makes a wider range of observations x provide substan-
tial evidence against the null hypothesis than the e-variable for d = 10 does,
whereas for strong evidence we have the opposite situation.

Later in the paper we will use methods related to both panels of Figure 2. In
our simulation studies in Section 7, we will generate observations from N(µ, 1)
and use again the likelihood ratios (4) that we used in the right panel. In our
empirical studies in Section 8, where we have no idea of the true distribution of
the data, we use the e-variables proportional to |x|d, as in the left panel.

3 Is it possible to compare e-values and p-
values?

Starting from the next section we will describe various methods based on p-
values and e-values. In Section 1 we already alluded to difficulties of comparing
such results. There is no overarching testing framework (at least at this time)
containing both p-testing and e-testing that could be used for comparing such
results. The best we can do rigorously is to convert, albeit imperfectly, p-values
to e-values and vice versa.

Sometimes the user of statistical procedures has a clear preference for p-
values or e-values. These are some possible categories of users (this is not an
exhaustive list, of course):

1. Some users will find the frequentist interpretation of p-variables P appeal-
ing: for any threshold α, the long-run frequency of observing P ≤ α in
a sequence of independent identical trials is at most α. This is typical of
the frequentist school of classical statistics.

2. Other users will prefer a direct application of Cournot’s principle: for a
small α and pre-specified P , we do not expect to observe P ≤ α under
the null hypothesis. This school is referred to as Bernoullian statistics
by Glenn Shafer [Shafer, 2022], following Francis Edgeworth, Richard von
Mises, Arthur Dempster, and Ian Hacking.

3. Another category, representing Bayesian statistics, will like the Bayesian
interpretation of e-variables referred to in Section 1.

4. Our final category will accept the betting interpretation of an e-variable
E (see, e.g., Shafer [2021]): the e-value E(ω) is the pay-off of a lottery
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that is fair under the null hypothesis, and a large pay-off casts doubt on
the null hypothesis. The idea of betting is often regarded as an important
ingredient of Bayesian statistics (see, e.g, de Finetti [2017, 3.3.5]), but
it is used there in a very different way, in the form of no Dutch book
requirement.

Communication may be easier between the users in the first two categories (clas-
sical statistics), or between the users in the last two categories. But otherwise,
we need methods of conversion between p- and e-values. Therefore, as a first
step we discuss rigorous ways of turning p-values into e-values (known as cali-
brating p-values) and vice versa. For further details, see Vovk and Wang [2021,
Section 2].

A decreasing function f : [0, 1] → [0,∞] is a calibrator if, for any p-variable
P , f(P ) is an e-variable. In other words, a calibrator transforms p-values to
e-values. A very natural family of calibrators is

fκ(p) := κpκ−1, (6)

where κ ∈ (0, 1]. The maximum possible e-value

VS(p) := max
κ∈(0,1]

fκ(p) =

{
− exp(−1)/(p ln p) if p ≤ exp(−1)

1 otherwise
, p ∈ (0, 1],

(7)
attainable by this family will be referred to as the VS bound (abbreviating
“Vovk–Sellke bound” [Sellke et al., 2001; Shafer and Vovk, 2019, Section 11.5]),
but due to the maximum operation, VS(P ) need not be an e-variable even if P
is a p-variable.

In the opposite direction, a decreasing function f : [0,∞] → [0, 1] is an e-
to-p calibrator if, for any e-variable E, f(E) is a p-variable. It is a function
transforming e-values to p-values. As explained and formalized in Vovk and
Wang [2021, Proposition 2.2],

t ∈ [0,∞] 7→ min(1, 1/t) (8)

is the only reasonable e-to-p calibrator.
In general, calibrating p-values and e-values are crude processes. A strong e-

value of 20 barely attains statistical significance when transformed into a p-value
(namely, 5%) using (8). The VS bound for the borderline significant p-value of
5% is approximately 2.456, and so “is not worth more than a bare mention”,
according to Jeffreys. The low “round-trip efficiency” in the domain of p-values
can be illustrated by

1/VS(0.005) ≈ 0.072. (9)

The round trip turns the highly significant p-value of 0.5% into the non-
significant p-value of 7.2%. And this is despite the VS bound being achievable
as e-value only in hindsight.

In view of the low round-trip efficiency, it is natural to expect that users
of statistical procedures who insist on using p-values will be best served by

11



methods producing directly p-values. A method producing e-values will have
to be vastly superior to result in better, or even equally good, p-values after
conversion. Interestingly, we will see such an example in Section 7 (see the
discussion of Figure 4). Symmetrically, a method producing p-values will have
to be vastly superior to a method producing directly e-values in order to result
in better or equally good e-values after conversion. The caveat here is that
the result of comparison still depends on using the bound (7) (using the e-to-p
calibrator (8) is uncontroversial).

The user who is uncertain whether to use p-values or e-values usually needs
a more accurate comparison than that provided by the crude procedures of
calibration and e-to-p calibration. We do not have objective ways of doing
that. One subjective way to compare results using e-values to those using p-
values is to appeal to Jeffreys’s [1961, Appendix B] authority: “Users of these
tests speak of the 5 per cent. point in much the same way as I should speak
of the K = 10−1/2 point, and of the 1 per cent. point as I should speak of the
K = 10−1 point.” In our terminology, people doing p-testing speak of a p-value
of 5% (resp. 1%) in much the same way as Jeffreys should speak of an e-value
of 101/2 (resp. 10). The approximate equivalences are

p-value of 5% ∼ e-value of 101/2 ≈ 3.16 p-value of 1% ∼ e-value of 10.
(10)

Another subjective way is to use Good’s [Good, 1958, Appendix IV] rule of
thumb. According to Good, the e-value corresponding to a p-value of p should
lie in the range (

1

30p
,

3

10p

)
(11)

when 0.001 < p < 0.2 (which Good felt were the values of p that are usually of
most practical interest). In Good’s picture the p-value of p is obtained using the
standard recipe from the Bayes factor as test statistic (this condition is always
satisfied in this paper). If we take the geometric mean 1/(10p) of the end-points
of the interval (11), we will obtain

p-value of 5% ∼ e-value of 2 p-value of 1% ∼ e-value of 10 (12)

in place of (10). While (10) and (12) are close, Good acknowledges the signifi-
cant uncertainty surrounding the correspondence.

A slightly more objective way of comparing methods based on p-values and
e-values is to consider their mathematical simplicity. A great advantage of e-
values is that they are very easy to combine; as we mentioned in Section 1,
arithmetic averaging is essentially the only symmetric method of combination
[Vovk and Wang, 2021, Proposition 3.1]. This leads to simple and intuitive
algorithms (and in Vovk et al. [2022] merging e-values is even used as a technical
tool for designing admissible ways of merging p-values).
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4 Confidence regions

The notion of a confidence region was introduced by Neyman [1934; 1937] only
in its basic version. (See Lehmann [2011, Section 6.4] for Neyman’s predecessors;
the word “confidence” is a translation of the Polish “ufność” [Neyman, 1941],
and Neyman’s adjectival use of it was at first made fun of by his English listeners
[Neyman, 1934, comments by Bowley and Fisher].) The p-version is usually
implicit, and the e-version has not been used in mainstream statistics. However,
the e-version has been used for a long time, in some form, in the algorithmic
theory of randomness [Levin, 1976; Gács, 2005; Vovk and V’yugin, 1993], and
in this paper we will use the terminology close to that of the algorithmic theory
of randomness.

Let us fix a statistical model (Qθ | θ ∈ Θ). A basic test of size α is a family
of critical regions (Aθ | θ ∈ Θ) of size α. Therefore, for each simple statistical
hypothesis θ, a basic test fixes a critical region Aθ for testing θ: Pθ(Aθ) ≤ α.

The interpretation of a basic test that is symmetric between the parameter
space Θ and sample space Ω is that ω ∈ Aθ means poor agreement between θ
and ω. This binary relation of poor agreement and its complementary relation
of good agreement have two sides:

� on the testing side, we start from θ and divide the ωs into those that
conform to θ (ω /∈ Aθ) and those that do not (ω ∈ Aθ);

� on the estimation side, we start from ω and divide the θs into those that
agree with ω (ω /∈ Aθ) and those that do not (ω ∈ Aθ).

In particular, on the estimation side we have the notion of a confidence esti-
mator as introduced by Neyman (cf. Neyman [1934, Figure IV]): the confidence
estimator corresponding to a basic test (Aθ | θ ∈ Θ) is

Γ(ω) := {θ ∈ Θ | ω /∈ Aθ}. (13)

In the context of a basic test (Aθ | θ ∈ Θ) of a small size α we may say that
an outcome ω ∈ Ω is strange for a parameter value θ ∈ Θ if ω ∈ Aθ. According
to Cournot’s principle, we do not expect the outcome ω to be strange for the
true θ. Our interpretation of the confidence region (13) is that Γ(ω) covers the
true θ unless ω is strange.

Graduated notions of a confidence estimator are discussed surprisingly rarely
in statistics textbooks, especially in full generality (e.g., the popular textbook
Cox and Hinkley [1974] is one of the few places where they are discussed, but
only in the context of a linearly ordered parameter space Θ). A p-test is a
family of p-variables (Pθ | θ ∈ Θ), and the corresponding p-confidence regions
are defined as

Γp,α(ω) := {θ ∈ Θ | Pθ(ω) > α}, α ∈ (0, 1). (14)

We regard Pθ(ω) as a measure of agreement between θ and ω, with small values
indicating poor agreement, and define Γp,α(ω) to be the set of θ that agree with
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ω at level α. The definition of a p-confidence estimator is only a slight variation
on the definition of a basic estimator: namely, (14) can be obtained from (13) by
setting Aθ := {ω | Pθ(ω) ≤ α} for each α. Notice that the p-confidence regions
Γp,α(ω) are nested : α1 < α2 implies Γp,α2

(ω) ⊆ Γp,α1
(ω); this property is

sometimes discussed or at least mentioned in statistics textbooks (e.g., in Cox
and Hinkley [1974, Section 7.2], Casella and Berger [2002, 9.5.2], and Stuart
et al. [1999, Section 19.15]).

Similarly, an e-test is a family of e-variables (Eθ | θ ∈ Θ). We also regard
Eθ(ω) as a measure of agreement between θ and ω, but now large values indicate
poor agreement. Analogously to (14), we define the e-confidence regions as

Γe,α(ω) := {θ ∈ Θ | Eθ(ω) < α}, α ∈ (0,∞). (15)

The definitions (14) and (15) of p-confidence regions and e-confidence regions
generalize the basic definition (13), which corresponds to using the p-test and
the e-test defined by (1) and (2), respectively, with added subscripts θ.

The notions of p-test and e-test provide graduated notions of strangeness.
Let α > 0; we will sometimes refer to it as the significance level (the interesting
values are α < 1 for p-testing and α > 1 for e-testing). In the context of a
p-test (Pθ | θ ∈ Θ), we say that ω ∈ Ω is α-strange for θ ∈ Θ if Pθ(ω) ≤ α
(i.e., if we reject θ at level α after observing ω). And in the context of an e-test
(Eθ | θ ∈ Θ), we say that ω ∈ Ω is α-strange for θ ∈ Θ if Eθ(ω) ≥ α. If there
is any risk of confusion, we will use the fuller expressions “(p, α)-strange” and
“(e, α)-strange”.

The interpretation of the confidence region (14) in terms of a Fisher-type
disjunction is that Γp,α(ω) covers the true θ unless ω is (p, α)-strange. Similarly,
we interpret (15) by saying that Γe,α(ω) covers the true θ unless ω is (e, α)-
strange.

Starting from Section 7, we will visualize e-confidence regions for a range
of thresholds, including 10. Inspired by the terminology of Jeffreys [1961, Ap-
pendix B], already discussed in Section 2, we will refer to an e-confidence region
at level 1 as weak, at level 101/2 as substantial, at level 10 as strong, at level
103/2 as very strong, and at level 100 as extremely strong.

Simultaneous confidence regions

Sometimes we are interested not in θ but in some derivative parameter (as in
Schervish’s textbook [1995, 5.2.1]). For example, if Ω = R and Θ = P(Ω), we
might be interested in the median of θ ∈ Θ. Let g : Θ → Θg be the function
mapping the original parameter θ to a new parameter, g(θ).

The confidence regions for the derived parameter g(θ) become:

Γg(ω) := {g(θ) | θ ∈ Θ & ω /∈ Aθ} (16)

in place of (13),

Γg
p,α(ω) := {g(θ) | θ ∈ Θ & Pθ(ω) > α}, α ∈ (0, 1),
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in place of (14), and

Γg
e,α(ω) := {g(θ) | θ ∈ Θ & Eθ(ω) < α}, α ∈ (0,∞), (17)

in place of (15).
It is important that we can have a family of functions g, and the confidence

estimator (16) will be valid simultaneously for all of them, provided the same
basic test (Aθ | θ ∈ Θ) is used for all g. The same is true for p-confidence
estimators and e-confidence estimators; what is important is that the notion
of strangeness should not depend on g. For example, for any family of func-
tions g : Θ → Θg, the confidence region Γg

e,α(ω) in (17) contains g(θ) for all g
simultaneously unless the outcome is α-strange for the true parameter θ.

Confidence regions in the toy example

Here we continue our discussion of the toy example started in the previous
section. Now our statistical model (Qθ | θ ∈ Θ) is Θ := R and Qθ := N(θ, 1)
for all θ. For a fixed δ, such as δ := 3, let us generalize (5) to

Ē
(δ)
θ (x) :=

E
(δ)
θ (x) + E

(−δ)
θ (x)

2
, (18)

where, generalizing (4),

E
(δ)
θ (x) :=

dN(θ + δ, 1)

dN(θ, 1)
(x) =

exp(−(x− θ − δ)2/2)

exp(−(x− θ)2/2)
= exp(δ(x− θ)− δ2/2).

(19)
This gives us an e-test.

Remember that the x-coordinate of the pointB2 in the right panel of Figure 2
is approximately 3.27, and let us fix δ := 3. Therefore, the extremely strong
e-confidence regions (e-confidence intervals in this case) are

Γe,100(x) ≈ [x− 3.27, x+ 3.27], x ∈ R, (20)

where “≈” refers to 3.27 being an approximate value. For Jeffreys’s other thresh-
olds the e-confidence intervals are

Γe,103/2(x) ≈ [x− 2.88, x+ 2.88], Γe,10(x) ≈ [x− 2.50, x+ 2.50],

Γe,101/2(x) ≈ [x− 2.11, x+ 2.11], (21)

and the p-confidence intervals are, as usual, Γp,0.01(x) ≈ [x− 2.58, x+ 2.58].
The e-confidence intervals (20)–(21) will change if the alternative hypothe-

ses θ± 3 are replaced by other ones, such as θ± 1 or θ± 5. It can be considered
an advantage of p-confidence intervals, and p-values in general, that for an im-
portant (albeit small) set of popular statistical models there is no dependence
on the choice of the alternative hypothesis. This is closely related to the exis-
tence of uniformly most powerful statistical tests [Lehmann and Romano, 2022,
Chapter 3].
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5 Necessity and possibility measures

The notions of a test discussed in the previous sections allow us to associate mea-
sures of confidence with subsets of the parameter space in view of an outcome.
These are just a different way to package confidence regions.

For a p-test (Pθ | θ ∈ Θ), the p-necessity measure of a set B ⊆ Θ in view of
an outcome ω ∈ Ω is defined as

2p(B | ω) := sup
θ/∈B

Pθ(ω). (22)

Now the Fisher-type disjunction for the true θ is: θ ∈ B unless ω is 2p(B | ω)-
strange for θ. Therefore, we expect θ ∈ B for a small 2p(B | ω). Of course,
this disjunction remains true if we replace “2p(B | ω)-strange” by “c-strange”
for any c ≥ 2p(B | ω), but in statements of this kind we usually choose the c
that makes them as strong as possible.

Similarly, for an e-test (Eθ | θ ∈ Θ), the e-necessity measure of B ⊆ Θ given
ω ∈ Ω is

2e(B | ω) := inf
θ/∈B

Eθ(ω), (23)

with the analogous interpretation: θ ∈ B unless ω is 2e(B | ω)-strange for θ.
If we are interested in a derivative parameter g(θ), where g : Θ → Θg, the

p-necessity measure and e-necessity measure of B ⊆ Θg in view of ω ∈ Ω are
now defined as

2g
p(B | ω) := sup

θ∈Θ:g(θ)/∈B

Pθ(ω) = 2p(g
−1(B) | ω), (24)

2g
e(B | ω) := inf

θ∈Θ:g(θ)/∈B
Eθ(ω) = 2e(g

−1(B) | ω), (25)

respectively, with the same interpretations as before.
Analogously to (22)–(25) we can define the p-possibility measure and e-

possibility measure by

3p(B | ω) := sup
θ∈B

Pθ(ω) = 2p(B
c | ω),

3e(B | ω) := inf
θ∈B

Eθ(ω) = 2e(B
c | ω),

3g
p(B | ω) := 3p(g

−1(B) | ω) = 2g
p(B

c | ω),
3g

e(B | ω) := 3e(g
−1(B) | ω) = 2g

e(B
c | ω),

where Bc := Θ \ B is the complement of B. For example, a large value of
3e(B | ω) means that θ ∈ B is hardly possible for the true θ in view of the
outcome ω.

Remark 5.1. Our notation is borrowed from modal logic, which has two basic
modalities, 2 (necessity) and 3 (possibility), analogous to the quantifiers ∀
and ∃, respectively. The notions of necessity and possibility measures discussed
in this section are closely related to the necessity and possibility measures of
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possibility theory [Dubois and Prade, 1988] (which they include in a wider class
of what they call confidence measures), and also somewhat related to the belief
and plausibility functions of the Dempster–Shafer theory [Shafer, 1976], and to
confidence and credibility in conformal prediction [Vovk et al., 2005, (3.66)].
However, unlike their counterparts in those theories, our notions just re-express
the idea of confidence regions without adding new information.

Necessity measures in the toy example

In the toy example considered at the end of the previous section (with the same
p-test and e-tests), we can write the p-necessity measure of a set B ⊆ R of
parameter values in view of an observation x ∈ R as

2p(B | x) = 2Φ

(
− inf

θ/∈B
|x− θ|

)
.

According to the definition, 2p(B | x) is determined by the parameter value
outside B (assuming the inf is attained) that makes the observed x least strange.

The main application of necessity measures in this paper (described in the
following section) will be “one-sided”, in that the corresponding confidence re-
gions will provide only a lower bound (on the quantity called the number of true
discoveries; equivalently, they provide an upper bound on the number of false
discoveries). If instead of (18) we use the e-test (19) with δ > 0, we will have
prediction regions in the form of rays pointing left, and the necessity measure
will be

2e(B | x) = exp
(
δ (x− inf Bc)− δ2/2

)
.

6 Controlling the number of false discoveries

Starting from this section we specialize our setting. Our sample space (Ω,A)
is still arbitrary, but now we take Θ := P(Ω) as our parameter space and
Qθ := θ for all θ ∈ Θ as our statistical model; remember that P(Ω) is the set
of all probability measures on (Ω,A). Since our statistical model contains all
probability measures on Ω, there is no real loss of generality.

Suppose that we are given K e-variables E1, . . . , EK for testing hypotheses
H1, . . . ,HK , which are our base hypotheses; we would like to reject some of them
(in fact, as many of them as possible under a validity constraint). The realized
values of E1, . . . , EK are denoted by e1, . . . , eK , so that ek := Ek(ω) for the
realized outcome ω.

If we do not know anything about the nature of the hypotheses H1, . . . ,HK ,
it makes sense to reject a number of them with the largest ek. But in general, we
can consider an arbitrary non-empty rejection set R ⊆ {1, . . . ,K}; this is the set
of base hypotheses, represented by their indices, that the researcher chooses to
reject. Goeman and Solari [2011a] argue convincingly that in some practically
relevant cases R will not necessarily correspond to the largest ek; e.g., R may
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include hypotheses connected by a common theme, such as all relevant genes
related to the gastrointestinal tract [Goeman and Solari, 2011a, 4.1].

In this section we will find functions D providing a measure of confidence
in the number of true discoveries (to be formally defined momentarily) in the
following sense: a rejection set R contains more than j true discoveries unless the
outcome ω is DR(j)-strange. This statement is uniform in R and j, in the sense
of the strangeness of outcomes being measured by a fixed e-test. Therefore, a
largeDR(j) means high confidence in the number of true discoveries exceeding j.

For each θ ∈ P(Ω), we define

Iθ := {k ∈ {1, . . . ,K} | θ ∈ Hk}

to be the set of indices of hypotheses containing θ. If the researcher rejects Hk,
we refer to this decision as a discovery. We say that the discovery is true if
θ /∈ Hk, and it is false if θ ∈ Hk, where θ is the true (unknown) probability
measure governing the data generation. For a rejection set R, the number of
true discoveries is

gR(θ) := |R \ Iθ| = |{k ∈ R | θ /∈ Hk}| , (26)

and the number of false discoveries is

|R ∩ Iθ| = |{k ∈ R | θ ∈ Hk}| .

The sum of these two numbers is |R|, the total number of discoveries, and
so controlling the number of false discoveries is the same thing as controlling
the number of true discoveries. Our functions DR(j) will provide measures of
confidence in lower bounds j+1 on the number of true discoveries (equivalently,
upper bounds |R| − j − 1 on the number of false discoveries). Researchers are
sometimes interested in the proportion of true or false discoveries |R \ Iθ| / |R| or
|R ∩ Iθ| / |R|, respectively. We can also control those with the bounds (j+1)/ |R|
or (|R|− j−1)/ |R| (lower for true and upper for false discoveries), respectively.

Remark 6.1. The researcher may be interested in parameters g(θ) that differ
from (26) more substantially. For example, g(θ) may be the weighted number
of true discoveries in R (e.g., some genes can be more important than other
genes). Or, for a partition of R into groups (one of which can be, e.g., the genes
related to the gastrointestinal tract), g(θ) may depend on the number of groups
containing true discoveries. In this paper we restrict ourselves to the simplest
case.

For e-confidence bounds, we need an e-test (Eθ)θ∈P(Ω). For each k ∈ Iθ,
Ek is an e-variable for testing θ. We will obtain Eθ by merging (Ek)k∈Iθ . This
can be achieved by using e-merging functions studied in Vovk and Wang [2021].
An e-merging function is a Borel function F : ∪∞

n=0[0,∞]n → [0,∞] that is
increasing in each of its arguments and maps any finite sequence of e-variables
to an e-variable: if E1, . . . , En are e-variables, F (E1, . . . , En) is required to be
an e-variable as well. We always set F := 0 if the input sequence is empty. An

18



example (of paramount importance, as discussed earlier) is the arithmetic mean

(e1, . . . , en) 7→
1

n

n∑
i=1

ei. (27)

An e-merging function is symmetric if it does not depend on the order of its
arguments, like the arithmetic mean.

Let F be a symmetric e-merging function; we define for each θ ∈ Θ the
e-variable

Eθ := F (Ek : k ∈ Iθ). (28)

Our main object of interest is 3gR
e ({j} | ω) for this e-test, which we will abbre-

viate to 3gR
e (j | ω) dropping the curly braces.

Remark 6.2. Technically, the choice of F in (28) may even depend on θ, but we
will ignore this possibility in this paper. Moreover, we will be mainly interested
in one specific e-merging function (arithmetic mean).

Let us replace 3gR
e (j | ω) by a more explicit and easily computable expres-

sion. Set, for a rejection set R,

3gR
e (j | ω) = min

θ∈P(Ω):gR(θ)=j
Eθ

= min
θ∈P(Ω):|R\Iθ|=j

F (Ek : k ∈ Iθ)

≥ min
I⊆{1,...,K}:|R\I|=j

F (Ek : k ∈ I) =: DR
e,F (j), (29)

where min ∅ := ∞ (as usual), the argument ω is implicit after the first “=”, and
the equality =: in (29) signifies DR

e,F (j) being defined, with the subscripts (e, F )
dropped if clear from the context. Intuitively, in (29) we go over all I for which
there are exactly j true discoveries and evaluate their strangeness; if all of them
are strange, we are entitled to reject there being exactly j true discoveries.

The values DR(j) are informative for j = 0, . . . , |R| − 1, and we will some-
times refer to DR(j), j = 0, . . . , |R| − 1, as discovery e-vector. (Notice that we
always have DR(|R|) = F (∅) = 0, and so this value is not informative.)

Let us say (following Holm [1979, Section 1]) that H1, . . . ,HK satisfy the
free combinations condition for R if the sets Iθ, θ ∈ Θ, include all subsets of R:

∀S ⊆ R ∃θ ∈ Θ : Iθ = S. (30)

The “≥” in (29) becomes “=” under the free combinations condition, but this
condition is not required for the validity of our methods.

An algorithm for computing the discovery vector DR is given as Algorithm 1;
it is polynomial-time if the underlying e-merging function F , assumed symmet-
ric, is polynomial-time. It uses the notation Rc := {1, . . . ,K} \R and

Fe(I) := F (ei : i ∈ I), I ⊆ {1, . . . ,K}, I ̸= ∅, (31)
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Algorithm 1 Discovery e-vector for a given rejection set

Input: A symmetric e-merging function F , the rejected hypotheses R ⊆
{1, . . . ,K}, and an increasing sequence of e-values e1 ≤ · · · ≤ eK .

1: for j = 0, . . . , |R| − 1 do
2: let Rj be R without its j largest elements
3: DR(j) := Fe(Rj)
4: for i = 1, . . . , |Rc| do
5: let Rc

i consist of the i smallest elements of Rc

6: e := Fe(Rj ∪Rc
i})

7: if e < DR(j) then
8: DR(j) := e

where e := (e1, . . . , eK). Without loss of generality we assume that the e-values
are sorted in the ascending order,

e1 ≤ · · · ≤ eK . (32)

A special and important choice of F is the arithmetic average (27). Using this
e-merging function in (29), the arithmetic-mean discovery e-vector is defined as

AVR(j) := min
I⊆{1,...,K}:|R\I|=j

1

|I|
∑
i∈I

Ei, j ∈ {0, . . . , |R| − 1}.

As we said earlier, arithmetic averaging is the only useful symmetric e-merging
function [Vovk and Wang, 2021, Proposition 3.1]. The vector AVR is computed
by Algorithm 1 with

Fe(I) :=
1

|I|
∑
i∈I

ei, I ⊆ {1, . . . ,K}, I ̸= ∅.

In general, a discover e-vector DR
e,F (j) is not guaranteed to be monotonic

in j (not even AVR(j) is). Therefore, we also consider the regularized discovery
e-vector

D̄R
e,F (j) := min

j′≤j
DR

e,F (j
′).

Regularized discovery e-vectors automatically satisfy two other properties of
monotonicity.

Proposition 6.3. For any nonempty sets R and R′ in {1, . . . ,K}, any j ∈
{0, . . . , |R| − 1}, any j′ ∈ {0, . . . , |R′| − 1}, and any e-merging function F :

(1) D̄R
e,F (j

′) ≤ D̄R
e,F (j) if j ≤ j′ < |R|;

(2) D̄R′

e,F (j) ≥ D̄R
e,F (j) if R ⊆ R′;

(3) D̄R′

e,F (j + |R′ \R|) ≤ D̄R
e,F (j).
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Proof. Item (1) holds by definition.
For item (2), we can rewrite the inequality D̄R′

e,F (j) ≥ D̄R
e,F (j) as

min
I:|R′\I|≤j

F (Ei : i ∈ I) ≥ min
I:|R\I|≤j

F (Ei : i ∈ I),

and it suffices to notice that any I satisfying |R′ \ I| ≤ j satisfies |R \ I| ≤ j.
(Item (2) is also a special case of item (3), which will be proved independently.)

Item (3) can be rewritten as

min
I:|R′\I|≤j+|R′\R|

F (Ei : i ∈ I) ≤ min
I:|R\I|≤j

F (Ei : i ∈ I),

which follows from

|R \ I| ≤ j =⇒ |R′ \ I| ≤ j + |R′ \R| ,

which in turn follows from the obvious

|R′ \ I| ≤ |R \ I|+ |R′ \R| .

Algorithm 1 can by adapted to produce the regularized discovery vector by
replacing |Rc| with K in line 4, replacing line 6 with e := Fe(Rj ∪ {1, . . . , i}),
and ignoring line 5.

According to our definition of D̄,

2gR
e ({j + 1, j + 2, . . . } | ω) = 3gR

e ({0, . . . , j} | ω) ≥ D̄R(j).

In agreement with Section 5, D̄R(j) gives a confidence bound on the number of
true discoveries: the rejection set R contains more than j true discoveries unless
the outcome ω is D̄R(j)-strange. Therefore, we can count on there being more
than j true discoveries in R for a large observed D̄R(j).

Our definitions so far are essentially translations of Goeman and Solari’s
[2011a, Section 2] definitions into the language of e-values. We will explain
the connection in detail in Appendix C. As the procedure for p-values was first
proposed in Genovese and Wasserman [2004, Theorem 6.3], we refer to it as the
GWGS procedure. In Appendix C we will also comment on the recent result by
Goeman et al. [2021] about the GWGS procedure being the only admissible one
for controlling true discoveries (under a property of validity based on p-values).

Discovery e-matrices

Next we will discuss a less flexible method in which we consider a family of
rejection sets R that are chosen in an optimal way, in some sense. For each
r ∈ {1, . . . ,K}, the set

Rr := {K − r + 1, . . . ,K} (33)

is the optimal rejection set of size r (assuming (32)), meaning that DRr

e,F ≥ DR
e,F

for any other set R ⊆ {1, . . . ,K} of size r. In the terminology of statistical
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Algorithm 2 Discovery e-matrix D

Input: A symmetric e-merging function F and an increasing sequence of e-
values e1 ≤ · · · ≤ eK .

1: for r = 1, . . . ,K do
2: for j = 0, . . . , r − 1 do
3: Sr,j := {K − r + 1, . . . ,K − j}
4: Dr,j := Fe(Sr,j)
5: for i = 1, . . . ,K − r do
6: e := Fe(Sr,j ∪ {1, . . . , i})
7: if e < Dr,j then
8: Dr,j := e

decision theory [Wald, 1950, Section 1.3], Rr is a complete class of rejection
sets.

Let us call Dr,j := DRr

e,F (j) the discovery e-matrix. Its interpretation is that
the outcome ω is Dr,j-strange if there are exactly j true discoveries among the r
hypotheses with the largest e-values. An algorithm for computing the discovery
e-matrix D is given as Algorithm 2.

We are particularly interested in the arithmetic-mean discovery matrix AM,
i.e., the discovery e-matrix

AMr,j(e1, . . . , eK) := min
I:|Rr\I|=j

1

|I|
∑
i∈I

ei = min
I:|Rr\I|≤j

1

|I|
∑
i∈I

ei

(the last equality will follow from Proposition 6.4(1) below). In Appendix B we
illustrate discovery e-matrices with some other choices of the e-merging function
F , which, according to Vovk and Wang [2021, Proposition 3.1], are essentially
dominated by the arithmetic mean.

Using the arithmetic mean e-merging function leads to convenient properties
of monotonicity for the discovery e-matrix described in the next proposition
(established in Proposition 6.3 above for the regularized version). The first of
these properties will allow us to interpret Dr,j in terms of necessity 2, and the
other two properties will help us to visualize D in our plots in the experimental
sections.

Proposition 6.4. For any R,R′ of the form (33) (with r > 0), j ∈ {0, . . . , |R|−
1}, j′ ∈ {0, . . . , |R′| − 1}, and the arithmetic-mean e-merging function F :

(1) DR
e,F (j

′) ≤ DR
e,F (j) if j ≤ j′ < |R|;

(2) DR′

e,F (j) ≥ DR
e,F (j) if R ⊆ R′;

(3) DR′

e,F (j + |R′ \R|) ≤ DR
e,F (j) if R ⊆ R′.

Proof. The only property of F that we will need is

e ≥ max(e) =⇒ F (e, e) ≥ F (e), (34)
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where e ∈ [0,∞]∗ and e ∈ [0,∞]. The arithmetic mean e-merging function
clearly satisfies it. It is also clear that (34) implies

min(e′) ≥ max(e) =⇒ F (e, e′) ≥ F (e),

for any e, e′ ∈ [0,∞]∗.
Item (1) can be rewritten as

min
I′:|R\I′|=j′

F (Ei : i ∈ I ′) ≤ min
I:|R\I|=j

F (Ei : i ∈ I). (35)

Let I = Rj∪Rc
i be a set where the min on the right-hand side of (35) is attained

as Algorithm 1 is run. It suffices to consider I ′ := Rj′ ∪Rc
i .

Items (2) and (3) follow from item (1) of this proposition in combination
with items (2) and (3) of Proposition 6.3.

Properties (1)–(3) are not independent; namely, (1) follows from (2) and
(3). Indeed, given R, j, and j′ as in (1) and choosing any R′ ⊇ R satisfying
|R′ \R| = j′ − j, we can deduce from (2) and (3):

DR(j′) = DR(j + |R′ \R|) ≤ DR′
(j + |R′ \R|) ≤ DR(j).

Proposition 6.4(1) gives us an interpretation of the discovery e-matrix in
terms of the Fisher-type disjunction: there are more than j true discoveries
among the r hypotheses with the largest e-values unless the outcome ω is Dr,j-
strange. In symbols,

2
gRr
e ({j + 1, j + 2, . . . } | ω) ≥ Dr,j(ω).

Proposition 6.4 also shows that discovery matrices Dr,j are monotonic functions
along the rows r = const, along the columns j = const, and along the diagonals
r − j = const. Notice that the monotonicity along the rows follows immedi-
ately from the monotonicity along the columns and the monotonicity along the
diagonals.

Remark 6.5. It is true that arithmetic averaging is the only useful symmet-
ric e-merging function when no assumptions are made about the dependence
structure of the base e-values. On the other hand, if the base e-values are sup-
posed to be independent, it is clear that the product of e-variables is always
an e-variable. Therefore, when defining the e-test (28), we have plenty of al-
ternatives to the arithmetic mean in the role of F ; F can be the product, or
a combination of the arithmetic mean and the product. The product does not
work well for problems of the type considered in this paper, since small base
e-values then have disproportionate effect. However, the combination

Eθ :=
∑

{i,j}⊆Iθ:i ̸=j

EiEj/

(
|Iθ|
2

)
(with {i, j} ranging over the 2-element subsets of Iθ) of the product and arith-
metic averaging gives excellent results, much better than what we can get with-
out the assumption of independence. See Vovk and Wang [2020b] for details.
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Figure 3: The arithmetic-mean discovery matrix for 10 false and 10 true null
hypotheses, as described in text. The colour map on the right gives Jeffreys’s
thresholds, the boundaries between different colours in most of our plots, on the
decimal log scale. Row 10 is highlighted in blue.

7 Simulation studies

In our simulation studies we will visualize the arithmetic-mean discovery matrix
in some simple cases and compare Algorithm 2 with a method based on p-values.
Our setting will be similar to that of Vovk and Wang [2021, Section 5], where
family-wise validity is studied.

The observations are generated from the Gaussian model N(µ, 1). The null
hypotheses are N(0, 1) and the alternatives are N(δ, 1), where we take δ := −3
throughout the section. We generate K/2 observations from N(δ, 1) (the alter-
native distribution) and then K/2 observations from N(0, 1) (the null distribu-
tion), where K (the overall number of hypotheses) is an even number.

In this paper, we colour-code the entries (e-values) of discovery e-matrices
according to Jeffreys’s rule of thumb discussed in Section 2. The full colour map
is shown on the right of Figure 3 with the thresholds between different colours
given in terms of the decimal logarithm of e-values. The most interesting parts
of our plots of discovery e-matrices are those in yellow and red; green and dark
green parts carry little or no evidence and so are useless for us, and dark red
and black parts carry so much evidence that they are rare in a wide range of
practical applications (cf. Section 8). In all our discussions below we will ignore
the boundaries between the green and dark green parts.

Figure 3 shows the arithmetic-mean discovery matrix that Algorithm 2 gives
for K = 20: we generate 10 observations from N(δ, 1) and then 10 from N(0, 1).
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Table 1: The values Dr,j of the discovery matrix shown in Figure 4 for several
rows r and columns j.

r
j

10 11 26 27 28 39 40 41 42 45 46

31 95.6 87.5 14.1 10.8 7.63
32 96.5 88.5 16.0 12.7 9.63
50 103 96.0 33.2 30.6 28.2 11.2 9.94 8.73 7.52 4.04 3.11
51 103 96.0 33.4 30.9 28.5 11.6 10.4 9.21 8.01 4.61 3.69
52 103 96.0 33.6 31.1 28.7 12.0 10.8 9.61 8.43 5.10 4.19

The base e-values are the likelihood ratios

E(x) :=
dN(δ, 1)

dN(0, 1)
(x) = exp(δx− δ2/2) (36)

(cf. (4)) of the alternative to the null density, where x ∼ N(µ, 1) is the corre-
sponding observation. For example, row 10 (highlighted in blue) of the matrix
in Figure 3 shows that there is decisive evidence that the number of true discov-
eries among the 10 hypotheses with the largest e-values is at least 3. Similarly,
there is very strong evidence that the number of true discoveries is at least 5,
there is strong evidence that the number of true discoveries is at least 6, etc.

In this and following sections we will see many representations of discovery
e-matrices resembling Figure 3. They are also convenient representations of
confidence regions for the numbers of true discoveries at various significance
levels. For example, the non-black part of each such figure is formed by the
extremely strong confidence regions in each row. In the case of Figure 3, row
10 shows that the extremely strong confidence region for the number of true
discoveries among the 10 hypotheses with the largest e-values is {3, . . . , 10}.
The red/yellow/green part (not including dark red) is formed by the very strong
confidence regions, so that the very strong confidence region for the number of
true discoveries among the 10 hypotheses with the largest e-values is {5, . . . , 10}.
Similarly, the yellow/green and green parts are formed by strong and substantial
confidence regions, respectively.

The upper left panel of Figure 4 is the counterpart of Figure 3 for a larger
number of hypotheses, K = 200: we generate 100 observations from N(δ, 1) and
then 100 from N(0, 1). We will refer to this set of observations as the simulation
data.

In practice, a discovery e-matrix, such as that shown in the upper left panel
of Figure 4, can be used in different ways, for example:

� The researcher may have budget for a limited number of follow-up studies
of the hypotheses. For example, if in the situation of that panel her
budget is 50 hypotheses, she just concentrates on row 50 (studying the 50
hypotheses Hk with the largest e-values). For the first 11 entries (namely,
those with indices 0 to 10 inclusive) in this row the e-value exceeds 100,
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Figure 4: Upper left panel: the arithmetic-mean discovery matrix for 100 false
and 100 true null hypotheses. Upper middle panel: the GWGS discovery p-
matrix in the same situation for Fisher’s thresholds 1% and 5% (with values
below 1% shown in red and between 1% and 5% in yellow) under arbitrary
dependence. Upper right panel: as the upper middle panel but assuming inde-
pendence.
Lower left panel: the e-to-p calibrated arithmetic-mean discovery matrix in
the upper left panel using Fisher’s thresholds. Lower middle panel: the VS-
transformed GWGS discovery p-matrix in the upper middle panel of Figure 4
(under arbitrary dependence) using Jeffreys’s thresholds. Lower right panel:
the VS-transformed GWGS discovery p-matrix in the upper right panel (under
independence) using Jeffreys’s thresholds.

and so she has decisive evidence that there are at least 11 true discoveries
among those 50 hypotheses. Similarly,

– she has very strong evidence that there are at least 27 true discoveries,

– she has strong evidence that there are at least 40 true discoveries,

– she has substantial evidence that there are at least 46 true discoveries.

For the relevant e-values, see the bold entries in the row r = 50 of Table 1.
In terms of confidence regions, we can say, e.g., that our method gives the
substantial e-confidence region {46, 47, . . . }, so that 46 may be called the
substantial lower e-confidence bound on the number of true discoveries
among the 50 hypotheses.
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� The researcher might have some idea of what proportion of false discoveries
she is willing to tolerate (in the spirit of choosing the false discovery rate a
priori [Benjamini and Hochberg, 1995]). For example, if she is willing to
tolerate 10% of false discoveries and willing to use Jeffreys’s standard (e-
value greater than 10) of strong evidence, she should concentrate on row
31 (i.e., study the 31 hypotheses with the largest e-values), which is the
lowest row with at most 10% of entries below 10. See the bold entries in
the rows r ∈ {31, 32} of Table 1 (we have strong evidence that there are at
most 3/31 ≈ 9.7% of false discoveries in row 31 and at most 4/32 = 12.5%
of false discoveries in row 32).

� Alternatively, the researcher might have some idea of how many false
discoveries she is willing to tolerate (in the spirit of k-FWER [Romano
and Wolf, 2007]). If she is willing to tolerate at most 10 false discoveries
and still willing to use Jeffreys’s standard of strong evidence, she should
concentrate on row 51, which is the lowest row with at most 10 entries
(in fact, exactly 10 entries) below 10. See the bold entries in the rows
r ∈ {51, 52} of Table 1 (we have strong evidence that there are at most
10 false discoveries in row 51 and at most 11 false discoveries in row 52).

Of course, the researcher may know her hypotheses and relations between them
very well, and after looking at the discovery e-matrix she may come up with
her own rejection set R, as discussed in Section 6. In this case she should also
use Algorithm 1.

All discovery e-matrices in this and following sections, as noticed above (after
Proposition 6.4), satisfy three (non-independent) properties of monotonicity.
Namely, the entries AMr,j are decreasing in j (for a fixed r), increasing in r
(for a fixed j), and decreasing in r and j along the lines parallel to the main
diagonal.

Comparisons

This paper concentrates on multiple hypothesis testing using e-values, but in
scientific practice p-values are more popular, despite recent criticism. In this
subsection we will report results of our simulation studies in terms of p-values
and compare them to our results, as best we can in view of the difficulties
discussed in Section 3.

For comparison with methods based on p-values, we use the GWGS proce-
dure applied to standard procedures for combining p-values and to the same
nested rejection sets (initial subsets of {1, . . . , 200} assuming the p-values are
given in ascending order). These procedures admit computationally efficient
shortcuts [Goeman et al., 2019b, Theorem 1] and are implemented in the R pack-
age hommel [Goeman et al., 2019a]. As the base p-values we take P (x) := Φ(x),
where Φ is, as before, the standard Gaussian distribution function; these are
the p-values found using the most powerful test given by the Neyman–Pearson
lemma. The GWGS procedure can be interpreted as producing an analogue of
a discovery e-matrix, which we call a discovery p-matrix, with e-values replaced
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by p-values. For details, see Appendix C. In particular, a version of the notion
of a discovery p-vector was introduced in Goeman and Solari [2011b, Section 3].

The package hommel has an option (simes) that controls the choice of the
procedure for combining p-values, and the resulting discovery p-matrix is valid
either under arbitrary dependence, in which case Hommel’s [1986] procedure
is used for combining p-values, or under certain assumptions on the depen-
dence structure for the input p-values, in which case Simes’s [1986] procedure
is used. In particular, Simes’s procedure is valid under the assumption of in-
dependence; it is also valid under relaxations of independence such as positive
dependence [Sarkar, 2011], but not under arbitrary dependence. For brevity we
will talk about p-values that are either arbitrarily dependent or independent, but
it should be remembered that the assumption of independence may be relaxed.
We never make such assumptions about base e-values (but cf. Remark 6.5).

The upper middle panel of Figure 4 shows the discovery p-matrix found using
hommel applied to the simulation data under arbitrary dependence. The upper
right panel of Figure 4 is analogous but assumes independent base p-values.
Both panels use Fisher’s thresholds 1% and 5%; the values below 1% are shown
in red, between 1% and 5% in yellow, and above 5% in green (so that red means
“highly significant” and yellow means “significant but not highly significant”).
According to Jeffreys as quoted in Section 3 (p. 12), the red and yellow areas
are somewhat comparable between p-values and e-values, but we can draw some
conclusions even without such cross-comparisons.

Remember that our method does not require any assumptions about the
dependence structure of the e-values. It is true that our simulated data are
independent, but this information is typically unavailable, and the performance
of methods that do not depend on independence or similar assumptions is still
interesting. Comparing the upper left and upper middle panels of Figure 4, we
can see that our method produces better confidence bounds if we are willing
to use Jeffreys’s informal correspondence between e-values and p-values. The
upper left panel is even better, in this sense, than the upper right panel, which
makes an assumption on the dependence structure of the base p-values.

The three lower panels of Figure 4 are the transformed versions of the cor-
responding upper panels. In the lower left panel, we transform the arithmetic-
mean discovery matrix (upper left panel) by applying the canonical e-to-p cali-
brator e 7→ 1/e. In the other two lower panels, we transform the corresponding
upper panels by applying the VS transformation (7). Therefore, the lower left
panel contains valid p-values, whereas the other two lower panels contain upper
bounds on e-values.

It is interesting that even after the crude step of e-to-p calibration (remember
the woeful round-trip efficiency illustrated by (9)), the lower left panel of Fig-
ure 4 still looks slightly better than the upper middle panel. In this comparison
there is no uncertainty in the choice of the e-to-p calibrator, since (8) is the only
reasonable one (namely, it dominates any other e-to-p calibrator). And even
the optimistic VS transformation (the lower middle panel) looks much worse
than the arithmetic-mean discovery matrix in the upper left panel. We can see,
even without using Jeffreys’s informal correspondence, that the method based
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Table 2: The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied
to the simulation data for FDR (false discovery rate) 5% and 1%.

assumption 5% 1%
independence 87 61
arbitrary dependence 55 28

on e-values produces better results in this case, despite the crude calibration
steps.

Not surprisingly, assuming independence makes direct treatment of p-values
more efficient: compare the upper right panel and the lower left panel. What is
more surprising is that, even assuming independence and using the optimistic
VS transformation, the lower right panel still look worse than the upper left
panel.

Table 2 gives the numbers of null hypotheses rejected by the Benjamini–
Hochberg procedure [Benjamini and Hochberg, 1995] and its version for arbi-
trary dependence [Benjamini and Yekutieli, 2001]. (The relationship between
the Benjamini–Yekutieli procedure and the hommel package without the simes

option is the same as that between the Benjamini–Hochberg procedure and the
hommel package with the simes option; this is made explicit in Goeman et al.
[2019b, Section 5].) Here the results are more difficult to interpret, since the kind
of guarantees provided by those procedures is so different from the guarantees
provided by the GWGS methods. Roughly, we get comparable results between
the row “arbitrary dependence” in Table 2 and the confidence bounds for the
number of true discoveries in, say, row 50 of the discovery matrix in the upper
left of Figure 4: as discussed earlier (cf. Table 1), the strong and substantial
confidence bounds are 40 and 46, respectively. (Remember that, following Jef-
freys, “strong” refers to the threshold of 10 for e-values and regarded as roughly
corresponding to “highly significant”, and “substantial” refers to the threshold
of 101/2 for e-values and regarded as roughly corresponding to “significant”.)

8 Empirical studies

In this section we will demonstrate how the methods of this paper can, in
principle, be used in practice. It is important that we will make no assumptions
of independence.

We will use the classical dataset first described in Hedenfalk et al. [2001]
and then carefully studied in Storey and Tibshirani [2003]. Essentially, we will
adapt Storey and Tibshirani’s analysis to using e-values in place of p-values (see
the end of the section for a discussion of differences). In our experiments we
use the version of the dataset made available as part of the R package qvalue

[Storey et al., 2019].
The main content of the dataset is the expression levels of 3226 genes in 15
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samples of tissues. Seven samples are coming from carriers of mutations in the
BRCA1 gene, and the remaining eight from carriers of mutations in the BRCA2
gene. We will say that each sample is labelled with its BRCA status: seven
are labelled BRCA1, and eight are labelled BRCA2. The core of the dataset is
the 3226× 15 matrix of gene expressions in the samples; all entries are positive
numbers. Following Storey and Tibshirani [2003, Appendix, Remark C], we
remove all rows containing at least one entry exceeding 20, which leaves us with
a 3170×15 data matrix. Each row of the data matrix corresponds to a gene and
each column to a sample, and the entry in row k and column j is the expression
level of gene k in sample j. For each gene we are interested in the scientific
hypothesis that the gene expression does not depend on the BRCA status of
the sample.

Storey and Tibshirani’s version of the dataset also contains some further
information, such as the p-value for each gene. For further information about
this dataset, which we will refer to as the BRCA dataset, see, e.g., Storey et al.
[2007, Section 5] and Guindani et al. [2009, 5.2].

For this dataset methods ensuring family-wise validity do not work well. For
example, the ten smallest p-values in Storey and Tibshirani’s list multiplied by
the number of genes 3170 are

0, 0.040, 0.050, 0.060, 0.060, 0.100, 0.140, 0.160, 0.240, 0.240 (37)

and so the Bonferroni correction leads to only three statistically significant p-
values. Moreover, one of the p-values is exactly zero, and so cannot be a valid
p-value (for details, see p. 33). Hedenfalk et al. conclude that 9–11 genes are
differentially expressed. Storey and Tibshirani’s informal analysis suggests that
many more, at least 33%, of the examined genes are differentially expressed.
However, their informal analysis assumes what they call “weak independence”:
they rely on the law of large numbers when inspecting histograms of p-values,
assuming that the probabilities of the p-values lying in various ranges will man-
ifest themselves as empirical frequencies seen in the histograms. Their formal
analysis is asymptotic and also assumes weak independence: see their Appendix,
Remark D.

We formalize the scientific theory of interest as the following statistical hy-
pothesis about each gene k: given the multiset of expression levels in row k
of the data matrix, each ordering of the row has the same probability. In our
current context, a nonconformity measure is a measurable function of two mul-
tisets; we will use it by applying, for a given gene, to the multiset (of size 7) of
the expression levels for the samples labelled BRCA1 and the multiset (of size
8) of the expression levels for the samples labelled BRCA2; the resulting value
will be called the nonconformity score. For computing base e-values, we use the
formula

ek :=
Tk

1
B+1

(∑B
b=1 T

0b
k + Tk

) , k = 1, . . . , 3170, (38)

where Tk is the nonconformity score computed from the kth row of the data
matrix with the true labels (BRCA1 or BRCA2) for each sample, T 0b

k is the
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nonconformity score computed from the same row with randomly permuted
labels, and B is the number of permutations. In our experiments, the case
0/0 of the right-hand side of (38) never occurs. We will call (38) the Monte
Carlo e-value. We are justified in calling it an e-value since, under the null
hypothesis, the expected value of the right-hand side of (38) is 1 if we set
0/0 := 1. (Moreover, the conditional expectation of the right-hand side of
(38) is 1 given the multiset of nonconformity scores {T 01

k , . . . , T 0B
k , Tk}, the

expectation being over all choices of the position of the true nonconformity
score in the multiset.)

Our nonconformity measure will be defined in terms of the t-statistic. Let
xkj be the base two logarithm of the value in row k and column j of the data
matrix (although the base does not matter in our empirical studies). The two-
sample t-statistic for the kth gene is

tk :=
x̄k2 − x̄k1√

s2k1/n1 + s2k2/n2

, (39)

where n1 = 7 is the number of BRCA1 columns, n2 = 8 is the number of BRCA2
columns, and

x̄k1 :=
1

n1

∑
j∈BRCA1

xkj , s2k1 :=
1

n1 − 1

∑
j∈BRCA1

(xkj − x̄k1)
2

are the sample mean and variance for the BRCA1 entries, with the analogous
expressions for BRCA2. The variances of the two groups (BRCA1 and BRCA2)
are not assumed to be equal (following Storey and Tibshirani [2003]), but using
equal-variance two-sample t-statistics would lead to similar results.

We define the nonconformity score as Tk := f(tk) for some function f of the
t-statistic tk (see (39)). A natural nonconformity score is |tk|, but we generalize
it to |tk|d for some d > 0. This choice of f is motivated by the Bayesian two-
sample t-test widely discussed in recent literature starting from Gönen et al.
[2005] and briefly reviewed in Gönen et al. [2019, Section 3]. A standard ex-
pression for the Bayes factor produced by such a test via the t-statistic t is

f(t) := c
(
1 + at2

)d/2
(40)

for positive constants a, c, and d involving the number of degrees of freedom and
effective sample size; see, e.g., Wang and Liu [2016, (14)] and Rouder et al. [2009,
(1)]; the form (40) goes back to Jeffreys [Ly et al., 2016, (12)]. However, different
constants are used in different papers. We set, without loss of generality, c := 1,
since c cancels out when using (38). We further simplify (40) by ignoring the
“1 + ”; this makes a and any constant factors in the definition of the t-statistic
t (there is a non-trivial factor under the assumption of equal variances for the
two groups) irrelevant, as they also cancel out when applying (38). Of course,
this step does not affect the validity of our methods.

The left panel of Figure 5 gives a key part of the arithmetic-mean discovery
matrix for the BRCA dataset with f(t) := |t|d for d := 10, with B := 10000, and
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Figure 5: Left panel: the top-left 200 × 200 corner of the arithmetic-mean
discovery matrix for the BRCA dataset for B := 10000, using Jeffreys’s thresholds.
Right panel: its version (based on (43)) that is only approximately valid.

Table 3: Summaries of the last row of the arithmetic-mean discovery matrix
for different values of d. Column “strong” contains the number of entries that
are greater than 10 (all of them are below 103/2, and so they provide strong
evidence, i.e., red in our pictures). Column “at least substantial” contains the
number of entries that are greater than 101/2 (providing at least substantial
evidence).

d strong at least substantial
4 0 62
6 0 82
8 4 70
10 7 56
12 8 46
20 9 29
50 8 17
100 7 14

with base Monte Carlo e-values (38). We can see that there is strong evidence
that the number of differentially expressed genes is at least as large as Hedenfalk
at al.’s number. If we settle for substantial evidence, the number is much larger.
Arguably, it is not as large as in Storey and Tibshirani’s study, but we are not
using any exchangeability or independence assumptions.

Dependence on the initial state of the random numbers generator (always set
to 1 in our experiments) is fairly significant but does not affect our conclusions.
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Dependence on the value of d is also significant; the values below 10 tend to
lead to higher numbers of true discoveries for Jeffrey’s standard of substantial
evidence, and the values above 10 to higher numbers of true discoveries for
strong evidence (up to a limit; see Table 3). The literature on the Bayesian
two-sample t-test quoted above seems to suggest that d should have the same
order of magnitude as the number of degrees of freedom.

Comparisons

We start by comparing our methodology with that of Storey and Tibshirani
[2003], which was our main source of data and ideas in this section. The main
differences are:

� Storey and Tibshirani use p-values whereas we use e-values.

� Storey and Tibshirani implicitly assume that the genes are exchangeable
under the null hypothesis.

� Moreover, Storey and Tibshirani assume that the p-values are weakly
independent.

Strictly speaking, Storey and Tibshirani’s method does not produce valid
p-values, even under their null hypothesis implicitly involving gene exchange-
ability. This can be seen from their formula for computing the p-values,

pk :=

∑B
b=1

∣∣{j : ∣∣t0bj ∣∣ ≥ |tk| , j = 1, . . . , 3170}
∣∣

3170 ·B
(41)

(the last displayed equation in their Appendix, Remark C), where tk is the t-
statistic for gene k and t0bj is the t-statistic for gene j with the labels BRCA1
and BRCA2 randomly permuted (for the bth random permutation, b = 1, . . . , B
and B := 100). The numerator of (41) can well be zero (and it is in one case:
see (37)).

To turn the expression (41) into a valid p-value (under the null hypothesis
of gene exchangeability and label uninformativeness), it suffices to add 1 to the
numerator and denominator of (41); cf. Lehmann and Romano [2022, (17.7)],
Hemerik and Goeman [2018], and the method of conformal prediction [Vovk
et al., 2005]. Namely,∑B

b=1

∣∣{j : ∣∣t0bj ∣∣ ≥ |tk| , j = 1, . . . , 3170}
∣∣+ 1

3170 ·B + 1
(42)

is a valid p-value. The intuition behind the expression (42) is that, to see how
well tk conforms to the multiset of size 3170 · B consisting of t0bj , we add tk to
the multiset before computing the rank p-value. Since we are comparing the
t-statistic for gene k with t-statistics for other genes in (41) and (42), we are
implicitly assuming gene exchangeability.
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Figure 6: Left panel: the top-left 200 × 200 corner of the arithmetic-mean
discovery matrix for the BRCA dataset for B := 100. Right panel: its simplified
version whose lack of validity is visible.

Under gene exchangeability, for computing base e-values, we can use the
formula

ek :=
Tk

1
3170·B+1

(∑B
b=1

∑3170
j=1 T 0b

j + Tk

) ,
in analogy with (42). This gives an e-variable under the assumption that the
labels are uninformative and the genes are exchangeable.

To avoid the assumption of gene exchangeability, we use the expression (38)
thus avoiding comparing the statistic pertaining to gene k to statistics pertaining
to other genes. Our value of B, B = 10000, is much larger than Storey and
Tibshirani’s B = 100.

We can also introduce a simplified version of (38):

ek :=
Tk

1
B

∑B
b=1 T

0b
k

, (43)

in analogy with (41). This version may be more intuitive, but it is only ap-
proximately valid for large B and ceases to be valid for small B. The difference
shows, e.g., in the fact that ek defined via (38) is bounded above by B + 1
whereas ek defined via (43) is potentially unbounded; such a difference can be
significant if B is small. When B = 10000, there is not much difference between
using (38) and using (43): see the right panel of Figure 5, which uses (43).

A useful role of the version (43) may be to check whether the value of B
in (38) is sufficiently large. In the case of Figure 5, the approximation is good,
which suggests that B is sufficiently large. However, in the case of Figure 6,
where B = 100 (as in Storey and Tibshirani [2003]), the right-hand panel, which
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Figure 7: Left panel: the top-left corner of the GWGS discovery p-matrix for the
BRCA dataset for Fisher’s thresholds 1% and 5%, assuming independence. Right
panel: analogous picture for Jeffreys’s thresholds applied to the VS bounds for
the entries of this matrix.

Table 4: The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied
to the BRCA dataset (the three entries of “1” are unreliable as they are based on
a zero p-value).

assumption 5% 1%
independence 88 1
arbitrary dependence 1 1

uses (43), looks far too good to be valid. On the other hand, the left-hand panel,
which uses (38), is valid but extremely conservative.

Results given by hommel are either poor (when independence is assumed) or
extremely poor (under arbitrary dependence). The former are given in Figure 7
and the latter are given in Appendix C (Figure 11).

The Benjamini–Hochberg procedure [Benjamini and Hochberg, 1995] rejects
88 null hypotheses at FDR q := 0.05 and 1 null hypothesis at FDR q := 0.01
for Storey and Tibshirani’s list of p-values (of course, we will always reject at
least 1 null hypothesis because of the zero p-value on their list). However, this
procedure assumes independence. Under arbitrary dependence, we can control
FDR by replacing q by q/

∑K
k=1 k

−1 [Benjamini and Yekutieli, 2001, Theorem
1.3]. This leads to rejecting 1 null hypothesis even at FDR 0.05, which is both
poor and unwarranted. These results are summarized in Table 4.
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Algorithm 3 Arithmetic-mean discovery matrix AM

Input: An increasing sequence of e-values e1 ≤ · · · ≤ eK .
1: s1 := e1
2: for k = 2, . . . ,K do
3: sk := sk−1 + ek

4: for r = 1, . . . ,K do
5: σr,r−1 := eK−r+1

6: for j = r − 2, . . . , 0 do
7: σr,j := σr,j+1 + eK−j

8: for r = 1, . . . ,K do
9: for j = 0, . . . , r − 1 do

10: AMr,j := σr,j/(r − j)
11: for i = 1, . . . ,K − r do
12: e := (σr,j + si)/(r − j + i)
13: if e < AMr,j then
14: AMr,j := e

9 Efficient implementation of Algorithm 2 for
the arithmetic mean

Algorithm 2 is a generic algorithm that works for any symmetric e-merging
function F . In general, computing one row of the discovery e-matrix takes time
O(K3) if we assume that the base e-merging function F can be computed in
time linear in the number of arguments. This assumption is correct for the
arithmetic mean and, provided the arguments are sorted, the Simes e-merging
function (see Appendix B). The overall computational complexity for the full
discovery e-matrix is very high, O(K4).

A more efficient implementation of Algorithm 2 for the arithmetic mean is
given as Algorithm 3, which uses arrays sk (the sum of the first k base e-values)
and σr,j (the sum of the base e-values with indices in Sr,j in the notation of
Algorithm 2). There is a preprocessing stage (lines 1–3) taking time O(K) and
another preprocessing stage (lines 4–7) taking time O(K2); the loop in lines
6–7 is executed in the decreasing order of j, and in particular it is not executed
when r = 1 (this also applies to two similar loops in Algorithm 4). After that
computing each row of the arithmetic mean discovery matrix takes time O(K2).
The overall time is O(K3).

An even more efficient implementation of Algorithm 2 is given as Algo-
rithm 4. This algorithm computes one row of the arithmetic mean discovery
matrix in time O(K), which gives the overall time O(K2). Both O(K) and
O(K2) are clearly optimal in this context. The ability to compute efficiently
individual rows is useful when the discovery matrix is big; e.g., it can be too big
to fit in computer memory.

We are using essentially the same array s as in Algorithm 3 (now we extend
it by adding s0 := 0), and the array σ in Algorithm 4 is one row of the array σ
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Algorithm 4 One row of the arithmetic-mean discovery matrix in time O(K)

Input: Increasing sequence of e-values e1 ≤ · · · ≤ eK and row number r ∈
{1, . . . ,K} of the discovery matrix.

1: s0 := 0
2: for k = 1, . . . ,K − r do
3: sk := sk−1 + ek

4: σr−1 := eK−r+1

5: for j = r − 2, . . . , 0 do
6: σj := σj+1 + eK−j

7: k := K − r
8: for j = 0, . . . , r − 1 do
9: slope :=

sk+σj

k+r−j
10: for i = k − 1, . . . , 0 do
11: new slope :=

si+σj

i+r−j
12: if new slope > slope then break

13: k := i
14: slope := new slope

15: AMr,j := slope
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Figure 8: Geometry behind Algorithm 4.

in Algorithm 3;

sk = e1 + · · ·+ ek, k = 0, . . . ,K − r,

σj := eK−r+1 + · · ·+ eK−j , j = 0, . . . , r − 1.

Of course, there is no need to recompute the array s for each row r of the
discovery matrix.

The geometry behind Algorithm 4 is shown in Figure 8. The coordinates
of each of the points Pk, k = 0, . . . ,K − r, are (k, sk), and the coordinates of
the point Qj , where j ∈ {0, . . . , r − 1}, are −(r − j, σj). Since the sequence
e1, . . . , eK−r is increasing, connecting the points P0, P1, . . . in this order (see
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the red line in Figure 8) gives us the graph of a convex function.
The command break in line 12 means leaving the loop, as in Python or R;

in this context, it is equivalent to “go to line 15”. The variable k in line 13 is
the index of the “current vertex” Pk; we start from the rightmost Pk in line 7
and then keep moving left. Figure 8 illustrates the execution of Algorithm 4
when k = 3, so that the current vertex is P3.

For each j = 1, . . . , r, the iteration of the loop in lines 9–15 of Algorithm 4
computes the slope of the straight line (shown in blue) passing through Qj and
touching the red line from below. The validity of the algorithm follows from
the point Qj+1 lying at or above the blue line, for each j = 0, . . . , r − 2. Let
us check the last statement. If k < K − r, the slope of the blue line is at most
ek+1 ≤ eK−r. On the other hand, the slope of the line going from Qj to Qj+1 is
eK−j ≥ eK−r. It remains to consider the case k = K−r. In this case, it suffices
to notice that the slope eK−j of the line going from Qj to Qj+1 is greater than
or equal to the average of e1, . . . , eK−j , which is the slope of the line going from
Qj to PK−r.

If we are only interested in the positions where discovery vectors or matrices
exceed a given threshold, we can also use algorithms described in Tian et al.
[2021].

10 Conclusion

The main technical tool of this paper, e-values, has important advantages over
p-values. The advantage that we have found most useful here is the easiness
of merging e-values: the arithmetic average of e-values is an e-value, and this
is the only useful symmetric method of merging e-values. Other advantages
were mentioned in Section 1, such as the open nature of e-values allowing their
sequential updating.

We have described methods for multiple hypothesis testing using e-values
and demonstrated their use in simulation and empirical studies. We believe that
these methods, being simpler and more powerful, are preferred to methods using
p-values unless the final result must be stated in terms of p-values. Besides, our
methods do not depend on the base e-values being independent, and under
arbitrary dependence, they are sometimes competitive with results based on
p-values even when the final result is to be stated in terms of p-values.

One of the obvious directions of further research is to extend our methods
to non-symmetric problems of multiple hypothesis testing (cf. Genovese et al.
[2006]), in which different e-values may be assigned different weights. Our
procedure for multiple hypothesis testing is generic and does not have to rely
on unweighted arithmetic averaging.
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A More e-variables for testing N(0, 1)

Embedding the null hypothesis N(0, 1) into the family N(µ, 1), as in the right
panel of Figure 2, is not the only option, and Figure 9 gives results for the
family N(0, σ2), σ > 0 being the standard deviation. The figure shows the
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likelihood ratios dN(0, σ2)/dN(0, 1) as e-variables for a range of σ, and it shows
P<(x) := χ2(x2) and P>(x) := 1 − χ2(x2) as p-variables, where χ2 is the
distribution function of χ2 with 1 degree of freedom (with P< based on σ < 1
as the alternative hypothesis, and P> based on σ > 1).

To get a non-trivial two-sided confidence interval for σ, we need to merge the
two p-variables (by, say, using the Bonferroni merging function B(P<, P>) :=
2min(P<, P>)) or merge two of the e-variables, one for σ > 1 and the other for
σ < 1 (which can be done more efficiently, simply by averaging them).

B Using other e-merging functions

In this appendix, we briefly explore discovery e-matrices using e-merging func-
tions F other than the arithmetic mean. For general e-merging functions F
(not necessarily satisfying (34)), we consider regularized discovery e-matrices

D̄r,j := min
j′≤j

Dr,j′ .

They are lower bounds on 3gR
e ({1, . . . , j} | ω). Algorithm 2 can be adapted to

produce the regularized discovery matrix by replacing K − r with K in line 5.
The Bonferroni e-merging function is the following lower bound for (27):

B(e1, . . . , en) :=
1

n
max

i∈{1,...,n}
ei. (44)

A better lower bound for (27) is given by the Simes e-merging function

S(e1, . . . , en) := max
i∈{1,...,n}

ie[i]

n
, (45)

where e[i] is the ith largest e-value among ei, i ∈ {1, . . . , n} [Vovk and Wang,
2021, end of Section 6]: e[1], . . . , e[n] is the permutation of e1, . . . , en satisfying
e[1] ≥ · · · ≥ e[n]. While (44) sometimes violates (34) (consider, e.g., the case
e = (e, . . . , e) in (34)), (45) is guaranteed to satisfy it.
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Figure 9: Some p-values and e-values for testing N(0, 1) embedded into the
family N(0, σ2). This complements the right panel of Figure 2.
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Proposition B.1. For all e ∈ [0,∞]∗ and e ≥ max(e),

S(e, e) ≥ S(e). (46)

Proof. Without loss of generality, suppose e = (e1, . . . , en) with en ≤ · · · ≤ e1 ≤
e. Let i be such that S(e) = iei/n. By the definition of S(e, e),

S(e, e) ≥ i+ 1

n+ 1
ei ≥

i

n
ei = S(e).

Therefore, regularization is never needed for the discovery e-matrices based on
the Simes e-merging function.

Our discussion of e-values and p-values in Section 3 suggests that the func-
tion t 7→ 1/t transforms e-values into p-values (cf. (8)) and transforms p-values
into approximate e-values (cf. (6) for a small κ ∈ (0, 1)); of course, the word “ap-
proximate” is used here in a crude sense (in the spirit of the algorithmic theory
of randomness). Under this correspondence, the Bonferroni e-merging function
(44) turns into the Bonferroni merging function for p-values, and the Simes e-
merging function (45) turns into the Simes merging function for p-values. The
dominating arithmetic-mean e-merging function (27) corresponds to using the
harmonic mean for merging p-values, and indeed the harmonic mean has been
discussed recently in this role [Wilson, 2019], sometimes with a similar justifica-
tion based on the VS bound [Held, 2019]. However, the harmonic mean is not a
valid function for merging p-values [Goeman et al., 2019c] unless multiplied by,
say, 2.5 lnK for K ≥ 3 [Vovk and Wang, 2020a].

With Fe(I) of (31) specialized to the Bonferroni lower bound

Fe(I) = Be(I) :=
1

|I|
max
i∈I

ei, I ⊆ {1, . . . ,K}, I ̸= ∅,

Algorithms 1 and 2 have the same interpretation as before (although the results
are not as good since they are based on more conservative e-values). However,
they simplify, especially Algorithm 2, whose regularized Bonferroni implemen-
tation is given as Algorithm 5. In line 1 of Algorithm 5 we initialize the adjusted
Bonferroni e-value, in line 3 we compute the raw Bonferroni e-value, and in line 4
we adjust it. The algorithm produces a matrix BM with constant columns and
takes time O(K) per column; this time is spent simply by writing one value re-
peatedly. The resulting computational complexity O(K2) is clearly the optimal
one.

Algorithm 5 Regularized Bonferroni discovery e-matrix BM

Input: An increasing sequence of e-values e1 ≤ · · · ≤ eK .
1: a := ∞
2: for j = 0, . . . ,K − 1 do
3: B := eK−j/(K − j)
4: if a > B then a := B
5: for r = j + 1, . . . ,K do
6: BMr,j := a
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Figure 10: Left panel: the regularized Bonferroni discovery e-matrix (given by
Algorithm 5) in the situation of Figure 4, using Jeffreys’s thresholds. Right
panel: the corresponding Simes discovery e-matrix.

Whereas Bonferroni-type procedures often perform well when the goal is
family-wise validity (see, e.g., Vovk and Wang [2021, Figures 3 and 4]), their
performance tends to deteriorate for less demanding notions of validity. (In
terms of p-values, this phenomenon is discussed in, e.g., Goeman and Solari
[2011b, Section 1].) Comparing the left panel of Figure 10 with the upper left
panel of Figure 4 we can see that the e-Bonferroni method is much worse than
arithmetic averaging when the goal is to control the number of false discoveries.

The poor performance of the e-Bonferroni method is clear already from
the upper left panel of Figure 4: the areas of different colours are far from
been vertical at the top, where they curve left. It is clear that every discovery
e-matrix that is dominated by this one and has vertical boundaries between
different colours (such as e-Bonferroni) is going to be much worse.

The Bonferroni discovery e-matrix (unregularized) can be obtained by re-
placing a with B in line 6 of Algorithm 5 (and optionally ignoring all other lines
containing a). The left panel of Figure 10 does not change if we remove the
regularization.

The right panel of Figure 10 shows the Simes e-matrix, based on (45), in
the situation of Figure 4. It is intermediate between AM and Bonferroni and,
remarkably, it looks better than the GWGS discovery p-matrix transformed by
applying the VS bound to its elements (the lower right panel of Figure 4).

Remark B.2. We can quantify the quality of the lower bounds (44) and (45) of
the arithmetic mean F by the inequalities

B(e1, . . . , en) ≤ S(e1, . . . , en) ≤ F (e1, . . . , en),
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1 ≤ F (e1, . . . , en)

S(e1, . . . , en)
≤

n∑
k=1

1

k
≤ lnn+ 1,

1 ≤ F (e1, . . . , en)

B(e1, . . . , en)
≤ n, 1 ≤ S(e1, . . . , en)

B(e1, . . . , en)
≤ n,

all of which are tight (achievable as equality for any n), apart from ≤ lnn+ 1
(which is tight only for n = 1). Since n := |I| ≤ K in (29), this gives bounds
for the ratios of the corresponding elements of the discovery e-matrices built on
top of B, S, and F .

C Comparison with the GWGS procedure

First we discuss the GWGS multiple testing procedure in the form described
in Goeman and Solari [2011a, Section 2] and in terms of our definitions. Let
F : ∪∞

n=1[0, 1]
n → [0, 1] be a p-merging function, i.e., a monotonic function

transforming p-variables into a p-variable: whenever P1, . . . , Pn are p-variables
for some n ∈ {1, 2, . . . }, F (P1, . . . , Pn) is a p-variable. Suppose that F is sym-
metric. With such an F we can associate the following regularized analogue of
(29) in terms of p-values:

D̄R
p,F (j) := max

I:|R\I|≤j
F (pi, i ∈ I) ≥ 2gR

p ({j + 1, j + 2, . . . } | ω), (47)

where the p-test P is defined by Pθ := F (Pk : k ∈ Iθ) (analogously to (28)); we
leave the dependence on p1, . . . , pK implicit, following Goeman and Solari and
similarly to the case of e-values.

Goeman and Solari prefer a kind of inverse to the function (47), which they
denote fα(R), suppressing the dependence on p1, . . . , pK ; we consider it as func-
tion of α ∈ [0, 1], which is interpreted as significance level. We will see that this
function satisfies

fα(R) > j ⇐⇒ D̄R
p,F (j) ≤ α (48)

(and this equivalence can serve as definition of f). Therefore, it gives us the
same lower p-confidence bound on the number of true discoveries at significance
level α.

For the reader familiar with Goeman and Solari [2011a], we will check that
their definition indeed satisfies (48). They first define their bound

tα(R) := max{|I| | I ⊆ R, I /∈ X}

on the number of false discoveries, where

X := {I | ∀J ⊇ I : J ∈ U}

are the subsets of {1, . . . ,K} rejected by the closed testing procedure, and

U := {I | F (pi, i ∈ I) ≤ α}
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are the subsets of {1, . . . ,K} rejected by F ; in general, I and J will run over
the subsets of {1, . . . ,K}. Then they define their bound on the number of true
discoveries as

fα(R) := |R| − tα(R). (49)

(And they refer to the true discoveries as false hypotheses and to the false
discoveries as true hypotheses.) The equivalence (48) can be checked as follows:

fα(R) > j ⇐⇒ tα(R) < |R| − j

⇐⇒ max{|I| | I ⊆ R, I /∈ X} < |R| − j

⇐⇒ (∀I ⊆ R : I /∈ X ⇒ |I| < |R| − j)

⇐⇒ (∀I ⊆ R : |I| ≥ |R| − j ⇒ I ∈ X )

⇐⇒ (∀I ⊆ R : |I| ≥ |R| − j ⇒ (∀J ⊇ I : J ∈ U))
⇐⇒ (∀J : |J ∩R| ≥ |R| − j ⇒ J ∈ U)
⇐⇒ (∀J : |R \ J | ≤ j ⇒ J ∈ U)
⇐⇒ max

J:|R\J|≤j
F (pi, i ∈ J) ≤ α ⇐⇒ D̄R

p,F (j) ≤ α.

In Section 7 we mentioned that Goeman and Solari [2011b, Section 3] intro-
duced a version of the notion of a discovery p-vector. Namely they introduced
the confidence distribution whose quantile function is α 7→ tα(R). We can in-
terpret (48) as D̄R

p,F being the distribution function whose quantile function is
α 7→ fα(R). Since f and t are so closely connected (see (49)), the discovery
p-vector is closely connected to Goeman and Solari’s confidence distribution
function.

A property of completeness for the GWGS procedure

Goeman et al. [2021] have shown that the GWGS procedure is the only admis-
sible one for controlling true discoveries. Doesn’t this mean that the e-version
of this procedure, Algorithm 1, is inadmissible?

Similarly to (29), the interpretation of the property of validity (47) in terms
of a Fisher-type disjunction is: the rejection set R contains more than j true
discoveries unless the outcome ω is D̄R

p,F (j)-strange. We can indeed obtain a
property of validity of the same kind (i.e., in terms of p-values) for the proce-
dure of Algorithm 1. Our interpretation of (29) (under the monotonicity in j,
as in Proposition 6.4(1)) was that the rejection set R contains more than j true
discoveries unless ω has an e-value of D̄R

e,F (j) or more. Applying the canonical
e-to-p calibrator (8), we can see that R contains more than j true discoveries
unless ω has a p-value of 1/D̄R

e,F (j) or less. We have the same property of va-

lidity, but with 1/D̄R
e,F (j) in place of D̄R

p,F (j). By Goeman et al.’s result, the

procedure with 1/D̄R
e,F (j) is either a GWGS procedure or inadmissible. Since

the operation of e-to-p calibration is so crude, there is no doubt that this pro-
cedure is inadmissible in non-degenerate cases. The source of its inadmissibility
is the inefficiency of converting e-values into p-values, and it can be shown that
Algorithm 1 itself is admissible when F is arithmetic averaging.
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Figure 11: Left panel: the top-left corner of the GWGS discovery p-matrix for
the BRCA dataset for Fisher’s thresholds 1% and 5%, under arbitrary dependence.
Right panel: analogous picture with each entry replaced by the corresponding
VS bound and using Jeffreys’s thresholds.

More results for the hommel package

In conclusion, we give one more figure demonstrating the work of the hommel

package. Figure 11 shows results (very poor) for the BRCA dataset without
assuming independence. In particular, the right panel is much worse than the
left panel of Figure 5, which also does not assume independence.

D Generalized Bayes and boosting a weak signal

When defining the base e-values for use in our simulation studies we just used
the likelihood ratio E(x) defined by (36). This is the simplest version of a Bayes
factor. It usually works very well, but in some cases can be improved. Later in
this appendix we will see an example where a weak signal needs to be boosted,
but we start from developing tools that will allow us to do so.

Let us choose a constant η > 0 (the learning rate) and refer to

Eη(x) :=
1

c
E(x)η =

1

c
exp(ηδx− ηδ2/2) (50)

as the generalized Bayes factor (see, e.g., Grünwald and van Ommen [2017,
2.4] and references therein). Here c > 0 is the normalizing constant ensuring∫
Eη dN(0, 1) = 1; a simple calculation gives

c = exp
(
η(η − 1)δ2/2

)
.

Plugging this into (50) we obtain

Eη(x) = exp(ηδx− η2δ2/2).
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Figure 12: Left panel: the top-left 200 × 200 corner of the arithmetic-mean
discovery matrix for the simulation data with 10,000 observations, 10% of false
hypotheses, and weak signal, using Bayes factors as base e-values, as described
in text. Right panel: using generalized Bayes factors with learning rate η = 2.
Both panels use Jeffreys’s thresholds.

Table 5: The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied
to the simulation data with 10,000 observations, 10% of false hypotheses, and
weak signal for FDR 5% and 1%.

assumption 5% 1%
independence 84 18
arbitrary dependence 10 0

This gives a useful interpretation of the generalized Bayes factor: it is still
the likelihood ratio, but we replace the true alternative N(δ, 1) by a false one,
N(ηδ, 1). For η > 1 we are boosting the difference between the null and alter-
native hypotheses.

One situation in which the likelihood ratio (36) does not work well is where
we have a large number of false null hypotheses, but the true data-generating
distributions are fairly close to the null hypotheses (as it were, we have a weak
signal). Figures 12–13 illustrate the case of 10,000 null hypotheses N(0, 1) of
which 1000 are false, the true alternatives being N(−2, 1) (which makes the
signal much weaker than in Section 7). In the left panel of Figure 12 we use
the Bayes factor (36), whereas in its right panel we use the generalized Bayes
factor (50) for η = 2. Using the generalized Bayes factor greatly improves the
discovery e-matrix. The results for the GWGS procedure are given in Figure 13;
they look poor, particularly so for arbitrary dependence.
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Figure 13: Left panel: the top-left 200 × 200 corner of the GWGS discovery
p-matrix for the simulation data with 10,000 observations, 10% of false hy-
potheses, and weak signal, under general dependence. Right panel: assuming
independence. The colour code is based on Fisher’s thresholds.

Table 5 gives the numbers of rejections for the Benjamini–Hochberg and
Benjamini–Yekutieli procedures. In view of Figure 12 (right panel), the results
for arbitrary dependence are poor.

Remark D.1. The likelihood ratio of the true alternative to the null has well-
known optimality properties as an e-variable: see, e.g., Shafer [2021, §2.2.1].
Figure 12 suggests that in multiple hypothesis testing the likelihood ratio may
be far from being optimal. It would be interesting to explore this phenomenon
theoretically.

E Empirical study: ground truth

In Section 8 we discussed a pioneering biomedical study whose results were
published a long time ago [Hedenfalk et al., 2001]. To evaluate the performance
of various statistical techniques and their assumptions, it is natural to analyze
the developments in this area of biomedicine since 2001.

The main goal of Hedenfalk et al. [2001] was to test the hypothesis that dif-
ferent genes are expressed by hereditary malignant breast tumours that are due
to mutations in the BRCA1 and BRCA2 genes and to identify differentially ex-
pressed genes. A recent review [Wiggins et al., 2020, Sections 2 and 5] compares
results of nine studies, starting from Hedenfalk et al. [2001], pursuing this goal
and mostly using different biological samples (therefore, not including Storey
and Tibshirani [2003]). The overlap between the lists of differentially expressed
genes produced by different studies is poor. In particular, only one gene has
been identified as associated with BRCA1 by more than two studies. This gene,
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TOB1, was among the genes identified in Hedenfalk et al. [2001, Figure 2A].
In Storey and Tibshirani’s list of p-values used in Figure 7 the TOB1 gene has
rank 77; in our list of e-values used in Figure 5 TOB1 has a slightly better rank
of 51.

One reason [Wiggins et al., 2020, Section 2] for the poor overlap between
different studies is the genuine difficulty of the problem of differentiating muta-
tions in the two BRCA genes while controlling for potential confounders, first
of all the estrogen- and progesterone-receptor status and the subtype, which
are known to affect gene expression greatly. For the dataset used in this pa-
per, differentiation between mutations in the two genes is facilitated, e.g., by
all BRCA1 samples being negative for both estrogen and progesterone receptors
and majority of the BRCA2 samples being positive for both [Hedenfalk et al.,
2001, Table 1]. Other studies reported in Wiggins et al. [2020] tried to control
for these confounders.

We can draw only limited conclusions from these follow-up studies. There
is often a big difference between the statistical null hypothesis and the scien-
tific hypothesis of interest. Whereas there are genuine significant differences
between the BRCA1 and BRCA2 samples in the dataset, the differences are
not necessarily due to their different BRCA status. A possible lesson is that in
our assumptions we should err on the side of caution avoiding assuming inde-
pendence or weak independence, which lead us to expect very large numbers of
discoveries.
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